M. Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>
Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
M. Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>
M. Somos, <a href="http://somos.crg4.comA010815/multiqa010815.pdftxt
reviewed
approved
proposed
reviewed
editing
proposed
G. C. Greubel, <a href="/A193826/b193826.txt">Table of n, a(n) for n = 0..1000</a>
approved
editing
editing
approved
a(n) ~ exp(4*Pi*sqrt(n/21)) / (2^(5/2) * 21^(1/4) * n^(3/4)). - Vaclav Kotesovec, Nov 15 2017
approved
editing
editing
approved
M. Somos, <a href="http://cis.csuohio.edu/~somos.crg4.com/multiq.pdf">Introduction to Ramanujan theta functions</a>
G.f. = 1 + x + 3*x^2 + 4*x^3 + 7*x^4 + 10*x^5 + 17*x^6 + 26*x^7 + 38*x^8 + ...
G.f. = 1/q + q^11 + 3*q^23 + 4*q^35 + 7*q^47 + 10*q^59 + 17*q^71 + 26*q^83 + ...
a[ n_] := SeriesCoefficient[ QPochhammer[ x, x^2] QPochhammer[ x^7, x^14] , , {x, 0, 4 n}];
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x^7] EllipticTheta[ 2, 0, x] / (2 x^(1/4) QPochhammer[ x, x] QPochhammer[ x^7, x^7]), {x, 0, n}];
a[ n_] := SeriesCoefficient[ QPochhammer[ x^14, x^28]^2 / (QPochhammer[ x, x^2] QPochhammer[ x^2, x^4]^2 QPochhammer[ x^7, x^14]^3) , , {x, 0, n}];
(PARI) {a(n) = localmy(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^4 + A)^2 * eta(x^14 + A)^5 / (eta(x + A) * eta(x^2 + A) * eta(x^7 + A)^3* eta(x^28 + A)^2), n))};
approved
editing