[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Revision History for A193826 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Expansion of psi(x^2) * phi(x^7) / (f(-x) * f(-x^7)) in powers of x where phi(), psi(), f() are Ramanujan theta functions.
(history; published version)
#22 by Charles R Greathouse IV at Fri Mar 12 22:24:46 EST 2021
LINKS

M. Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>

Discussion
Fri Mar 12
22:24
OEIS Server: https://oeis.org/edit/global/2897
#21 by N. J. A. Sloane at Wed Nov 13 22:00:12 EST 2019
LINKS

M. Somos, <a href="http://somos.crg4.comA010815/multiqa010815.pdftxt">Introduction to Ramanujan theta functions</a>

Discussion
Wed Nov 13
22:00
OEIS Server: https://oeis.org/edit/global/2833
#20 by Alois P. Heinz at Thu Jul 26 07:43:42 EDT 2018
STATUS

reviewed

approved

#19 by Michel Marcus at Wed Jul 25 23:50:55 EDT 2018
STATUS

proposed

reviewed

#18 by G. C. Greubel at Wed Jul 25 21:13:32 EDT 2018
STATUS

editing

proposed

#17 by G. C. Greubel at Wed Jul 25 21:13:13 EDT 2018
LINKS

G. C. Greubel, <a href="/A193826/b193826.txt">Table of n, a(n) for n = 0..1000</a>

STATUS

approved

editing

#16 by Vaclav Kotesovec at Wed Nov 15 12:15:31 EST 2017
STATUS

editing

approved

#15 by Vaclav Kotesovec at Wed Nov 15 12:15:25 EST 2017
FORMULA

a(n) ~ exp(4*Pi*sqrt(n/21)) / (2^(5/2) * 21^(1/4) * n^(3/4)). - Vaclav Kotesovec, Nov 15 2017

STATUS

approved

editing

#14 by Michael Somos at Fri Apr 24 22:17:21 EDT 2015
STATUS

editing

approved

#13 by Michael Somos at Fri Apr 24 22:16:42 EDT 2015
LINKS

M. Somos, <a href="http://cis.csuohio.edu/~somos.crg4.com/multiq.pdf">Introduction to Ramanujan theta functions</a>

EXAMPLE

G.f. = 1 + x + 3*x^2 + 4*x^3 + 7*x^4 + 10*x^5 + 17*x^6 + 26*x^7 + 38*x^8 + ...

G.f. = 1/q + q^11 + 3*q^23 + 4*q^35 + 7*q^47 + 10*q^59 + 17*q^71 + 26*q^83 + ...

MATHEMATICA

a[ n_] := SeriesCoefficient[ QPochhammer[ x, x^2] QPochhammer[ x^7, x^14] , , {x, 0, 4 n}];

a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x^7] EllipticTheta[ 2, 0, x] / (2 x^(1/4) QPochhammer[ x, x] QPochhammer[ x^7, x^7]), {x, 0, n}];

a[ n_] := SeriesCoefficient[ QPochhammer[ x^14, x^28]^2 / (QPochhammer[ x, x^2] QPochhammer[ x^2, x^4]^2 QPochhammer[ x^7, x^14]^3) , , {x, 0, n}];

PROG

(PARI) {a(n) = localmy(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^4 + A)^2 * eta(x^14 + A)^5 / (eta(x + A) * eta(x^2 + A) * eta(x^7 + A)^3* eta(x^28 + A)^2), n))};

STATUS

approved

editing

Discussion
Fri Apr 24
22:17
Michael Somos: Light and space edits. Updated multiq URL