_Clark Kimberling (ck6(AT)evansville.edu), _, Nov 08 2011
_Clark Kimberling (ck6(AT)evansville.edu), _, Nov 08 2011
proposed
approved
editing
proposed
allocated for Clark KimberlingDecimal expansion of least x satisfying x^2+3*x*cos(x)=sin(x).
9, 3, 0, 4, 9, 5, 0, 0, 2, 6, 3, 5, 9, 7, 0, 1, 0, 9, 7, 6, 3, 3, 4, 1, 0, 2, 4, 0, 2, 5, 4, 7, 8, 5, 1, 2, 5, 8, 6, 4, 4, 8, 8, 2, 4, 4, 1, 4, 8, 8, 7, 7, 2, 8, 1, 5, 2, 2, 7, 2, 8, 2, 8, 2, 0, 8, 3, 0, 6, 9, 2, 4, 0, 1, 9, 7, 5, 5, 2, 4, 2, 5, 1, 0, 1, 9, 2, 8, 9, 1, 3, 1, 7, 8, 3, 6, 8, 9, 9
0,1
See A199597 for a guide to related sequences. The Mathematica program includes a graph.
least: -0.93049500263597010976334102402547851258644...
greatest: 3.01796308106862887266781443388576897037832...
a = 1; b = 3; c = 1;
f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c*Sin[x]
Plot[{f[x], g[x]}, {x, -1.5, 3.5}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, -1, -.9}, WorkingPrecision -> 110]
RealDigits[r] (* A199605, least of 4 roots *)
r = x /. FindRoot[f[x] == g[x], {x, 3, 3.1}, WorkingPrecision -> 110]
RealDigits[r] (* A199606, greatest of 4 roots *)
Cf. A199597.
allocated
nonn,cons
Clark Kimberling (ck6(AT)evansville.edu), Nov 08 2011
approved
editing
allocated for Clark Kimberling
allocated
approved