editing
approved
editing
approved
T(3, 43) = 1 = card(1111).
approved
editing
editing
approved
Array A(m, k) starts:
.
Triangle T(m, k) starts:
[0] 1;
[1] 2, 1;
[2] 4, 3, 1;
[3] 8, 10, 4, 1;
[4] 16, 35, 22, 5, 1;
[5] 32, 126, 134, 46, 6, 1;
[6] 64, 462, 866, 485, 94, 7, 1;
[7] 128, 1716, 5812, 5626, 1700, 190, 8, 1;
Using a the representation of meanders as multisets as given in multiset permutations (see A361043) and generated by the Julia program section:below.
T(3, 0) = 8 = card(1000, 1100, 1010, 1001, 1110, 1101, 1011, 1111).
AT(3, 1, 2) = 10 = card(110000, 100100, 100001, 111100, 111001, 110110, 110011, 101101, 100111, 111111). Note that this is a subset of the 32 multiset permutations A361043(2, 4).
T(3, 2) = 4 = card(111000, 110001, 100011, 111111).
T(3, 4) = 1 = card(1111).
A198060 := proc(m, n) local i, j, k; add(add(add((-1)^(j+i)*binomial(i, j)* binomial(n, k)^(m+1)*(n+1)^j*(k+1)^(-j), i=0..m), j=0..m), k=0..n) end:
approved
editing
editing
approved
Array read by antidiagonals, m>=0, n>=0, A(m,n) = Sum_{k=0..n} Sum_{j=0..m} Sum_{i=0..m} (-1)^(j+i)*C(i,j)*C(n,k)^(m+1)*(n+1)^j*(k+1)^(m-j)/(k+1)^m.
approved
editing
editing
approved
for n in range(1, 7): print([n], Arow(n, 7)) # _Peter Luschny_, Mar 24 2023
(SageMath) # This function assumes an offset (1, 1).
def A(m: int, n: int) -> int:
S = sum(
sum(
sum((
(-1) ** (j + i)
* binomial(i, j)
* binomial(n - 1, k) ** m
* n ** j )
// (k + 1) ** j
for i in range(m) )
for j in range(m) )
for k in range(n) )
return S
def Arow(n: int, size: int) -> list[int]:
return [A(n, k) for k in range(1, size + 1)]
for n in range(1, 7): print([n], Arow(n, 7))
approved
editing
proposed
approved