proposed
approved
proposed
approved
editing
proposed
Number of nX3 n X 3 array permutations with each element not moving, or moving one space E, S or NW.
Binomial transform of A006131 starting (1, 5, 9, 29, 65, ...). - Gary W. Adamson, Feb 19 2014
Empirical: a(n) = 3*a(n-1) + 2*a(n-2).
G.f.: (x+3*x^2)/(1-3*x-2*x^2) [From _. - _Vladimir Kruchinin_, May 13 2011]
Some solutions for 4X34 X 3:
..4..5..1....0..5..1....0..1..2....0..1..2....4..0..1....0..1..2....4..1..2
..0..3..2....7..4..2....3..4..5....3..4..5....7..3..2....3..8..5....0..3..5
..6..7..8....3..6..8....6.11..8...10..7..8...10.11..5....6..4..7....6..7..8
..9.10.11....9.10.11....9..7.10....6..9.11....6..9..8....9.10.11....9.10.11
.
4 5 1 0 5 1 0 1 2 0 1 2
0 3 2 7 4 2 3 4 5 3 4 5
6 7 8 3 6 8 6 11 8 10 7 8
9 10 11 9 10 11 9 7 10 6 9 11
.
4 0 1 0 1 2 4 1 2
7 3 2 3 8 5 0 3 5
10 11 5 6 4 7 6 7 8
6 9 8 9 10 11 9 10 11
approved
editing
proposed
approved
editing
proposed
a[n_] := Sum[Sum[4^j Binomial[k-j+1, j], {j, 0, Quotient[k+1, 2]}]* Binomial[n-1, k], {k, 0, n-1}];
a /@ Range[1, 24] (* Jean-François Alcover, Sep 24 2019, after Gary W. Adamson *)
approved
editing
proposed
approved
editing
proposed
Number of nX3 array permutations with each element not moving, or moving one space E, S or NW.
Column 3 of A189610.
Empirical: a(n) = 3*a(n-1) +2*a(n-2).
Cf. A006131.
R. H. Hardin , Apr 24 2011
proposed
editing
editing
proposed