[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Revision History for A171803 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
G.f. satisfies: A(x) = P(x*A(x))^2 where A(x/P(x)^2) = P(x)^2 and P(x) is the g.f. for Partition numbers (A000041).
(history; published version)
#10 by Vaclav Kotesovec at Tue Oct 03 05:28:53 EDT 2023
STATUS

editing

approved

#9 by Vaclav Kotesovec at Tue Oct 03 05:28:35 EDT 2023
MATHEMATICA

nmax = 30; A[_] = 0; Do[A[x_] = x/Product[(1 - A[x]^k)^2, {k, 1, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x]/x, x] (* Vaclav Kotesovec, Oct 03 2023 *)

#8 by Vaclav Kotesovec at Tue Oct 03 05:27:02 EDT 2023
MATHEMATICA

(* Calculation of constants {d, c}: *) eq = FindRoot[{r/QPochhammer[s]^2 == s, 1/s + 2*Sqrt[s/r]*Derivative[0, 1][QPochhammer][s, s] == (2*(Log[1 - s] + QPolyGamma[0, 1, s]))/(s*Log[s])}, {r, 1/8}, {s, 1/4}, WorkingPrecision -> 1200]; {N[1/r /. eq, 120], val = -s*Log[s]*Sqrt[(-1 + s)/(Pi*r*(r*(-8*s*Log[-1 + 1/s] + 4*(-1 + s)*Log[1 - s]^2 + 3*(-1 + s)*Log[s]^2 + 8*Log[1 - s]*(1 + Log[s] - s*Log[s])) + 8*r*(-1 + s)*(-1 + Log[-1 + 1/s])* QPolyGamma[0, 1, s] + 4*r*(-1 + s)*QPolyGamma[0, 1, s]^2 - 4*r*(-1 + s)*QPolyGamma[1, 1, s] - 4*Sqrt[r]*(-1 + s)*s^(5/2)*Log[s]^2* Derivative[0, 2][QPochhammer][s, s] + 8*r*(-1 + s)*s*Log[s]* Derivative[0, 0, 1][QPolyGamma][0, 1, s]))] /. eq; N[Chop[val], -Floor[Log[10, Abs[Im[val]]]] - 3]} (* Vaclav Kotesovec, Oct 03 2023 *)

STATUS

approved

editing

#7 by Vaclav Kotesovec at Sun May 13 06:58:49 EDT 2018
STATUS

editing

approved

#6 by Vaclav Kotesovec at Sun May 13 06:58:46 EDT 2018
STATUS

approved

editing

#5 by Vaclav Kotesovec at Sat Nov 11 10:29:40 EST 2017
STATUS

editing

approved

#4 by Vaclav Kotesovec at Sat Nov 11 10:29:34 EST 2017
FORMULA

From Vaclav Kotesovec, Nov 11 2017: (Start)

a(n) ~ c * d^n / n^(3/2), where

d = 8.4251672106325154177760155558415141093613298032469849432733825... and

c = 0.6057593757525562292332998445991464666128350560350232598293... (End)

#3 by Vaclav Kotesovec at Sat Nov 11 10:16:19 EST 2017
MATHEMATICA

nmax = 25; Rest[CoefficientList[InverseSeries[Series[x*Product[(1 - x^k)^2, {k, 1, nmax}], {x, 0, nmax}]], x]] (* Vaclav Kotesovec, Nov 11 2017 *)

STATUS

approved

editing

#2 by Russ Cox at Fri Mar 30 18:37:20 EDT 2012
AUTHOR

_Paul D. Hanna (pauldhanna(AT)juno.com), _, Dec 19 2009

Discussion
Fri Mar 30
18:37
OEIS Server: https://oeis.org/edit/global/213
#1 by N. J. A. Sloane at Tue Jun 01 03:00:00 EDT 2010
NAME

G.f. satisfies: A(x) = P(x*A(x))^2 where A(x/P(x)^2) = P(x)^2 and P(x) is the g.f. for Partition numbers (A000041).

DATA

1, 2, 9, 48, 286, 1818, 12086, 82992, 584079, 4190738, 30539814, 225426240, 1681904909, 12663614266, 96099303213, 734250983952, 5643749482600, 43610375803722, 338578974873523, 2639771240159904, 20659895819582337

OFFSET

0,2

FORMULA

G.f. satisfies: A(x) = 1/Product_{n>=1} (1 - A(x)^n)^2.

G.f.: A(x) = Series_Reversion(x*eta(x)^2) where eta(q) is the q-expansion of the Dedekind eta function without the q^(1/24) factor (A010815).

Self-convolution of A171802.

EXAMPLE

G.f.: A(x) = 1 + 2*x + 9*x^2 + 48*x^3 + 286*x^4 + 1818*x^5 +...

A(x/P(x)^2) = P(x)^2 where:

P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 +...

P(x)^2 = 1 + 2*x + 5*x^2 + 10*x^3 + 20*x^4 + 36*x^5 + 65*x^6 + 110*x^7 +...

PROG

(PARI) a(n)=polcoeff(1/x*serreverse(x*eta(x+x*O(x^n))^2), n)

CROSSREFS
KEYWORD

nonn

AUTHOR

Paul D. Hanna (pauldhanna(AT)juno.com), Dec 19 2009

STATUS

approved