editing
approved
Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
editing
approved
nmax = 30; A[_] = 0; Do[A[x_] = x/Product[(1 - A[x]^k)^2, {k, 1, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x]/x, x] (* Vaclav Kotesovec, Oct 03 2023 *)
(* Calculation of constants {d, c}: *) eq = FindRoot[{r/QPochhammer[s]^2 == s, 1/s + 2*Sqrt[s/r]*Derivative[0, 1][QPochhammer][s, s] == (2*(Log[1 - s] + QPolyGamma[0, 1, s]))/(s*Log[s])}, {r, 1/8}, {s, 1/4}, WorkingPrecision -> 1200]; {N[1/r /. eq, 120], val = -s*Log[s]*Sqrt[(-1 + s)/(Pi*r*(r*(-8*s*Log[-1 + 1/s] + 4*(-1 + s)*Log[1 - s]^2 + 3*(-1 + s)*Log[s]^2 + 8*Log[1 - s]*(1 + Log[s] - s*Log[s])) + 8*r*(-1 + s)*(-1 + Log[-1 + 1/s])* QPolyGamma[0, 1, s] + 4*r*(-1 + s)*QPolyGamma[0, 1, s]^2 - 4*r*(-1 + s)*QPolyGamma[1, 1, s] - 4*Sqrt[r]*(-1 + s)*s^(5/2)*Log[s]^2* Derivative[0, 2][QPochhammer][s, s] + 8*r*(-1 + s)*s*Log[s]* Derivative[0, 0, 1][QPolyGamma][0, 1, s]))] /. eq; N[Chop[val], -Floor[Log[10, Abs[Im[val]]]] - 3]} (* Vaclav Kotesovec, Oct 03 2023 *)
approved
editing
editing
approved
editing
approved
From Vaclav Kotesovec, Nov 11 2017: (Start)
a(n) ~ c * d^n / n^(3/2), where
d = 8.4251672106325154177760155558415141093613298032469849432733825... and
c = 0.6057593757525562292332998445991464666128350560350232598293... (End)
nmax = 25; Rest[CoefficientList[InverseSeries[Series[x*Product[(1 - x^k)^2, {k, 1, nmax}], {x, 0, nmax}]], x]] (* Vaclav Kotesovec, Nov 11 2017 *)
approved
editing
_Paul D. Hanna (pauldhanna(AT)juno.com), _, Dec 19 2009
G.f. satisfies: A(x) = P(x*A(x))^2 where A(x/P(x)^2) = P(x)^2 and P(x) is the g.f. for Partition numbers (A000041).
1, 2, 9, 48, 286, 1818, 12086, 82992, 584079, 4190738, 30539814, 225426240, 1681904909, 12663614266, 96099303213, 734250983952, 5643749482600, 43610375803722, 338578974873523, 2639771240159904, 20659895819582337
0,2
G.f.: A(x) = 1 + 2*x + 9*x^2 + 48*x^3 + 286*x^4 + 1818*x^5 +...
A(x/P(x)^2) = P(x)^2 where:
P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 +...
P(x)^2 = 1 + 2*x + 5*x^2 + 10*x^3 + 20*x^4 + 36*x^5 + 65*x^6 + 110*x^7 +...
(PARI) a(n)=polcoeff(1/x*serreverse(x*eta(x+x*O(x^n))^2), n)
nonn
Paul D. Hanna (pauldhanna(AT)juno.com), Dec 19 2009
approved