[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Revision History for A176222 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

newer changes | Showing entries 21-30 | older changes
a(n) = (n^2 - 3*n + 1 + (-1)^n)/2.
(history; published version)
#43 by G. C. Greubel at Tue Mar 22 16:33:07 EDT 2022
NAME

a(n) = (n^2 - 3*n + 1 + (-1)^n)/2.

LINKS

G. C. Greubel, <a href="/A176222/b176222.txt">Table of n, a(n) for n = 3..1000</a>

FORMULA

a(n) = (n - t(n))*(n - 3 + t(n))/2, where t(n) = 1-(n mod 2).

G.f.: x^4*(-3+-x) / ( (1+x)*(x-1-x)^3 ). - R. J. Mathar, Mar 06 2011

From Bruno Berselli, Sep 13 2011: (Start)

a(n) + a(n+1) = A005563(n-2). a(-n) = A084265(n). - _Bruno Berselli_, Sep 13 2011

a(-n) = A084265(n). (End)

a(n) = 1 -2n2*n +floor(n/2) +floor(n^2/2). - Wesley Ivan Hurt, Jun 14 2013

E.g.f.: (1/2)*((1-x)*exp(x/2) - exp(-x/2))^2. - G. C. Greubel, Mar 22 2022

PROG

(Sage) [n*(n-3)/2 + ((n+1)%2) for n in (3..60)] # G. C. Greubel, Mar 22 2022

STATUS

approved

editing

#42 by N. J. A. Sloane at Thu Jan 16 23:18:21 EST 2020
STATUS

editing

approved

#41 by N. J. A. Sloane at Thu Jan 16 22:27:09 EST 2020
FORMULA

With offset 0, this is ceiling(n/2)*(2*floor(n/2)+3). - N. J. A. Sloane, Jan 16 2020

STATUS

approved

editing

#40 by Alois P. Heinz at Mon Jul 17 21:03:52 EDT 2017
STATUS

proposed

approved

#39 by Michel Marcus at Mon Jul 17 12:19:34 EDT 2017
STATUS

editing

proposed

Discussion
Mon Jul 17
21:03
Alois P. Heinz: ...
#38 by Michel Marcus at Mon Jul 17 12:19:26 EDT 2017
LINKS

P. Barry, <a href="http://arxiv.org/abs/1205.2565">On sequences with {-1, 0, 1} Hankel transforms</a>, arXiv preprint arXiv:1205.2565, [math.CO], 2012.

STATUS

proposed

editing

#37 by Jean-François Alcover at Mon Jul 17 12:09:51 EDT 2017
STATUS

editing

proposed

#36 by Jean-François Alcover at Mon Jul 17 12:08:52 EDT 2017
FORMULA

a(n) = A174239(n-2) * A174239(n-1). - Paul Curtz, Jul 17 2017

STATUS

approved

editing

Discussion
Mon Jul 17
12:09
Jean-François Alcover: Paul Curtz e-mailed me the formula  a(n) = A174239(n-2) * A174239(n-1)
#35 by Charles R Greathouse IV at Fri Oct 16 15:04:06 EDT 2015
STATUS

editing

approved

#34 by Charles R Greathouse IV at Fri Oct 16 15:04:01 EDT 2015
PROG

(PARI) a(n)=(n^2-3*n+1+(-1)^n)/2 \\ Charles R Greathouse IV, Oct 16 2015

STATUS

approved

editing