[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176222 revision #40

A176222
a(n) = (n^2-3*n+1+(-1)^n)/2.
10
0, 3, 5, 10, 14, 21, 27, 36, 44, 55, 65, 78, 90, 105, 119, 136, 152, 171, 189, 210, 230, 253, 275, 300, 324, 351, 377, 406, 434, 465, 495, 528, 560, 595, 629, 666, 702, 741, 779, 820, 860, 903, 945, 990, 1034, 1081, 1127, 1176, 1224, 1275, 1325, 1378, 1430
OFFSET
3,2
COMMENTS
Let I = I_n be the n X n identity matrix and P = P_n be the incidence matrix of the cycle (1,2,3,...,n).
Let T = P^(-1)+I+P.
11000...01
11100....0
01110.....
00111.....
..........
00.....111
10.....011
Then a(n) is the number of (0,1) n X n matrices A <= T (i.e., an element of A can be 1 only if T has a 1 at this place) having exactly two 1's in every row and column with per(A) = 4.
REFERENCES
V. S. Shevelyov (Shevelev), Extension of the Moser class of four-line Latin rectangles, DAN Ukrainy, 3 (1992), 15-19.
LINKS
FORMULA
a(n) = (n-t(n))*(n-3+t(n))/2, where t(n) = 1-(n mod 2).
G.f.: x^4*(-3+x) / ( (1+x)*(x-1)^3 ). - R. J. Mathar, Mar 06 2011
a(n)+a(n+1) = A005563(n-2). a(-n) = A084265(n). - Bruno Berselli, Sep 13 2011
a(n) = 1-2n+floor(n/2)+floor(n^2/2). - Wesley Ivan Hurt, Jun 14 2013
From Wesley Ivan Hurt, May 25 2015: (Start)
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4), n>4.
a(n) = Sum_{i=(-1)^n..n-2} i. (End)
a(n) = A174239(n-2) * A174239(n-1). - Paul Curtz, Jul 17 2017
EXAMPLE
For n=5 the reference matrix is:
11001
11100
01110
00111
10011
There are 2^(3*n) = 32768 0-1 matrices obtained from removing one or more 1's in it.
There are 305 such matrices with permanent 4 and there are 13 such matrices with exactly two 1's in every column and every row.
There are 5 matrices having both properties. One of them is:
10001
01100
01100
00011
10010
MAPLE
A176222:=n->(n^2-3*n+1+(-1)^n)/2: seq(A176222(n), n=3..100); # Wesley Ivan Hurt, May 25 2015
MATHEMATICA
Table[(n^2 - 3*n + 1 + (-1)^n)/2, {n, 3, 100}] (* or *) CoefficientList[Series[x (x - 3)/((1 + x)*(x - 1)^3), {x, 0, 30}], x] (* Wesley Ivan Hurt, May 25 2015 *)
PROG
(MAGMA) [(n^2-3*n+1+(-1)^n)/2: n in [3..100]]; // Vincenzo Librandi, Mar 24 2011
(PARI) a(n)=(n^2-3*n+1+(-1)^n)/2 \\ Charles R Greathouse IV, Oct 16 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vladimir Shevelev, Apr 12 2010
EXTENSIONS
Matrix class definition checked, edited and illustrated by Olivier Gérard, Mar 26 2011
STATUS
approved