reviewed
approved
reviewed
approved
proposed
reviewed
editing
proposed
a(n) = 2*a(n-1) + A001792(n).
a(n) = A001793(n) - 2^(n-1) for n > 0. - Brad Clardy, Mar 02 2012
From Amiram Eldar, Aug 13 2022: (Start)
Sum_{n>=1} 1/a(n) = 1322/75 - 124*log(2)/5.
Sum_{n>=1} (-1)^(n+1)/a(n) = 132*log(3/2)/5 - 782/75. (End)
(MAGMAMagma) [2^(n-2)*n*(5+n) : n in [0..30]]; // Vincenzo Librandi, Oct 08 2011
approved
editing
editing
approved
(PARI) a(n)=n*(n+5)<<(n-2) \\ Charles R Greathouse IV, Sep 21 2017
proposed
editing
editing
proposed
G.f.: x*(-3+4*x)/(2*x-1)^3. [_R. J. Mathar, _, Dec 11 2010]
a(n) = 2^(n-2)*n*(5+n). [_R. J. Mathar, _, Dec 11 2010]
a(n) = A001793(n)-2^(n-1) for n > 0. [_Brad Clardy, _, Mar 02 2012]
proposed
editing
editing
proposed
<a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (6,-12,8).
a(n) = (1/32) * Sum_{k=0..n+4-1} Sum_{i=0..n+4-1} (k-2+3) * C(n+4,-1,i). - Wesley Ivan Hurt, Sep 20 2017