[go: up one dir, main page]

login
Revision History for A163264 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Highly composite numbers that are the product of consecutive integers.
(history; published version)
#5 by Wesley Ivan Hurt at Sun Jun 26 05:19:00 EDT 2022
STATUS

editing

approved

#4 by Wesley Ivan Hurt at Sun Jun 26 05:18:43 EDT 2022
CROSSREFS
#3 by Wesley Ivan Hurt at Sun Jun 26 05:17:54 EDT 2022
EXAMPLE

2=1*2, 6=2*3, 12=3*4, 24=2*3*4, 60=3*4*5, 120=4*5*6, 240=15*16, 360=3*4*5*6, 720=8*9*10, 840=4*5*6*7, 1260=35*36, 1680=5*6*7*8, 2520=3*4*5*6*7, 5040=7*8*9*10, 15120=5*6*7*8*9, 20160=3*4*5*6*7*8, 50400=224*225, 55440=7*8*9*10*11, 166320=54*55*56, 332640=6*7*8*9*10*11, 665280=7*8*9*10*11*12, 2162160=9*10*11*12*13*14, 3603600=10*11*12*13*14*15, 4324320=2079*2080, 8648640=7*8*9*10*11*12*13, 17297280=63*64*65*66, 32432400=9*10*11*12*13*14*15, 43243200=350*351*352.

CROSSREFS

Cf. A064224.

STATUS

approved

editing

#2 by Russ Cox at Fri Mar 30 17:22:54 EDT 2012
AUTHOR

_T. D. Noe (noe(AT)sspectra.com), _, Jul 28 2009

Discussion
Fri Mar 30
17:22
OEIS Server: https://oeis.org/edit/global/120
#1 by N. J. A. Sloane at Tue Jun 01 03:00:00 EDT 2010
NAME

Highly composite numbers that are the product of consecutive integers.

DATA

2, 6, 12, 24, 60, 120, 240, 360, 720, 840, 1260, 1680, 2520, 5040, 15120, 20160, 50400, 55440, 166320, 332640, 665280, 2162160, 3603600, 4324320, 8648640, 17297280, 32432400, 43243200

OFFSET

1,1

COMMENTS

Intersection of A002182 and A045619. Some of these numbers have two representations as the product of consecutive integers. The shortest representation is shown in the examples below. This sequence is probably complete.

EXAMPLE

2=1*2, 6=2*3, 12=3*4, 24=2*3*4, 60=3*4*5, 120=4*5*6, 240=15*16, 360=3*4*5*6, 720=8*9*10, 840=4*5*6*7, 1260=35*36, 1680=5*6*7*8, 2520=3*4*5*6*7, 5040=7*8*9*10, 15120=5*6*7*8*9, 20160=3*4*5*6*7*8, 50400=224*225, 55440=7*8*9*10*11, 166320=54*55*56, 332640=6*7*8*9*10*11, 665280=7*8*9*10*11*12, 2162160=9*10*11*12*13*14, 3603600=10*11*12*13*14*15, 4324320=2079*2080, 8648640=7*8*9*10*11*12*13, 17297280=63*64*65*66, 32432400=9*10*11*12*13*14*15, 43243200=350*351*352

CROSSREFS
KEYWORD

nonn

AUTHOR

T. D. Noe (noe(AT)sspectra.com), Jul 28 2009

STATUS

approved