reviewed
approved
reviewed
approved
proposed
reviewed
editing
proposed
editing
proposed
proposed
reviewed
editing
proposed
a(n) = 2n2*n^2 + 8n 8*n + 1.
1, 11, 25, 43, 65, 91, 121, 155, 193, 235, 281, 331, 385, 443, 505, 571, 641, 715, 793, 875, 961, 1051, 1145, 1243, 1345, 1451, 1561, 1675, 1793, 1915, 2041, 2171, 2305, 2443, 2585, 2731, 2881, 3035, 3193, 3355, 3521, 3691, 3865, 4043, 4225, 4411, 4601, 4795, 4993
Pierre Gayet, <a href="/A162316/a162316.gif">Note et Compte rendu</a> (gif version).
Pierre Gayet, <a href="/A162316/a162316.pdf">Note et Compte Rendu</a> (pdf version).
Pierre Gayet, <a href="/A162316/a162316_1.txt">98 séquences générées ... par la formule générale indiquée</a>.
Claude Monet, <a href="https://web.archive.org/web/20060428022333/http
From Elmo R. Oliveira, Oct 27 2024: (Start)
E.g.f.: (1 + 10*x + 2*x^2)*exp(x).
a(n) = A100041(n) + A016993(n+1).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
approved
editing
(MAGMAMagma) [ 2*n^2+8*n+1: n in [0..50] ];