reviewed
approved
reviewed
approved
proposed
reviewed
editing
proposed
<a href="/index/Rec#order_16">Index entries for linear recurrences with constant coefficients</a>, signature (12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, -78).
From G. C. Greubel, Sep 13 2023: (Start)
G.f.: (1+t)*(1-t^16)/(1 - 13*t + 90*t^16 - 78*t^17).
a(n) = 12*Sum_{j=1..15} a(n-j) - 78*a(n-16). (End)
CoefficientList[Series[(t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(78*t^16 - 12*t^15 - 12*t^14 - 12*t^13 - 12*t^12 - 12*t^11 - 12*t^10 - 12*t^9 - 12*t^8 - 12*t^7 - 12*t^6 - 12*t^5 - 12*t^4 - 12*t^3 - 12*t^2 - 12*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Jul 01 2016 *)
CoefficientList[Series[(1+t)*(1-t^16)/(1-13*t+90*t^16-78*t^17), {t, 0, 50}], t] (* G. C. Greubel, Jul 01 2016; Sep 13 2023 *)
coxG[{16, 78, -12, 40}] (* The coxG program is at A169452 *) (* G. C. Greubel, Sep 13 2023 *)
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^16)/(1-13*x+90*x^16-78*x^17) )); // G. C. Greubel, Sep 13 2023
(SageMath)
def A167922_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1+x)*(1-x^16)/(1-13*x+90*x^16-78*x^17) ).list()
A167922_list(40) # G. C. Greubel, Sep 13 2023
approved
editing
editing
approved
<a href="/index/Rec#order_16">Index entries for linear recurrences with constant coefficients</a>, signature (12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, -78).
approved
editing
reviewed
approved
proposed
reviewed
editing
proposed