proposed
approved
proposed
approved
editing
proposed
aQ[n_] := PrimeQ[n] && EvenQ[Count[IntegerDigits[n, 2], 1]] == OddQ[Mod[n, 3]] && Module[{d = Reverse[IntegerDigits[n, 2]]}, Total@d[[1;; -1;; 2]] >= Total@d[[2;; -1;; 2]]]; Select[Range[5300], aQ] (* Amiram Eldar, Dec 15 2018 *)
reviewed
editing
proposed
reviewed
editing
proposed
277, 337, 349, 373, 853, 1093, 1109, 1117, 1237, 1297, 1301, 1303, 1361, 1367, 1373, 1381, 1399, 1429, 1489, 1493, 1621, 1861, 1873, 1877, 1879, 2389, 3413, 3541, 4177, 4357, 4373, 4421, 4423, 4441, 4447, 4549, 4561, 4567, 4597, 4933, 4951, 4957, 5077, 5189, 5197, 5209, 5233, 5237
In the notation of A139370, a prime p is in the sequence iff e(p)>o(p) and e(p)-o(p)== 4 or 5 (mod 6). [From __Vladimir Shevelev_, Dec 12 2008]
(PARI) isokp(p) = (p>2) && isprime(p) && ((hammingweight(p) % 2) != ((p % 3) % 2)); \\ A065049
isok0(n) = {my(irb = Vec(select(x->(x%2), Vecrev(binary(n)), 1))); #select(x->(x%2), irb) < #irb/2; } \\ A139370
isok(p) = isokp(p) && !isok0(p); \\ Michel Marcus, Dec 15 2018
Missing 853 and more terms from Michel Marcus, Dec 15 2018
approved
editing
In the notation of A139370, a prime p is in the sequence iff e(p)>o(p) and e(p)-o(p)== 4 or 5 (mod 6). [From _Vladimir Shevelev (shevelev(AT)bgu.ac.il), _, Dec 12 2008]
_Vladimir Shevelev (shevelev(AT)bgu.ac.il), _, Dec 11 2008, Dec 12 2008
277, 337, 349, 373, 1093, 1109, 1117, 1237, 1297, 1301, 1303, 1361, 1367, 1373, 1381, 1399, 1429, 1489, 1493, 1621, 1861, 1873, 1877, 1879
1,1
In the notation of A139370, a prime p is in the sequence iff e(p)>o(p) and e(p)-o(p)== 4 or 5 (mod 6). [From Vladimir Shevelev (shevelev(AT)bgu.ac.il), Dec 12 2008]
nonn,new
Vladimir Shevelev (shevelev(AT)bgu.ac.il), Dec 11 2008, Dec 12 2008
approved