[go: up one dir, main page]

login
Revision History for A141644 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Primes of the form (p(2n)-p(n))/(7*2), where p(n)=n-th prime.
(history; published version)
#5 by Harvey P. Dale at Fri Feb 01 15:51:30 EST 2019
STATUS

editing

approved

#4 by Harvey P. Dale at Fri Feb 01 15:51:26 EST 2019
NAME

Primes of the form (p(2n)-p(n))/(7*2, ), where p(n)=n-th prime.

MATHEMATICA

Select[Table[(Prime[2n]-Prime[n])/14, {n, 3000}], PrimeQ] (* Harvey P. Dale, Feb 01 2019 *)

EXTENSIONS

Definition clarified by Harvey P. Dale, Feb 01 2019

STATUS

approved

editing

#3 by Russ Cox at Fri Mar 30 18:52:27 EDT 2012
AUTHOR

_Juri-Stepan Gerasimov (2stepan(AT)rambler.ru), _, Sep 18 2008

Discussion
Fri Mar 30
18:52
OEIS Server: https://oeis.org/edit/global/257
#2 by Russ Cox at Fri Mar 30 17:39:39 EDT 2012
CROSSREFS

Cf. A072473. [From _R. J. Mathar (mathar(AT)strw.leidenuniv.nl), _, Oct 04 2008]

EXTENSIONS

More terms from _R. J. Mathar (mathar(AT)strw.leidenuniv.nl), _, Oct 04 2008

Discussion
Fri Mar 30
17:39
OEIS Server: https://oeis.org/edit/global/190
#1 by N. J. A. Sloane at Fri Jan 09 03:00:00 EST 2009
NAME

Primes of the form (p(2n)-p(n))/7*2, where p(n)=n-th prime.

DATA

3, 19, 41, 173, 181, 281, 347, 373, 401, 409, 433, 449, 461, 461, 479, 499, 509, 541, 547, 571, 577, 619, 691, 701, 709, 859, 881, 919, 929, 1087, 1091, 1093, 1097, 1193, 1229, 1367, 1367, 1481, 1483, 1511, 1523, 1553, 1559, 1579, 1601, 1667, 1697, 1699

OFFSET

1,1

EXAMPLE

If n=10, then (p(10*2)-p(10))/7*2=(71-29)/14=3=a(1).

If n=45, then (p(45*2)-p(45))/7*2=(463-197)/14=19=a(2).

If n=85, then (p(85*2)-p(85))/7*2=(1013-439)/14=41=a(3).

If n=300, then (p(300*2)-p(300))/7*2=(4409-1987)/14=173=a(4).

If n=311, then (p(311*2)-p(311))/7*2=(4597-2063)/14=181=a(5).

If n=459, then (p(459*2)-p(459))/7*2=(7187-3253)/14=281=a(6), etc.

CROSSREFS

Cf. A000040.

Cf. A072473. [From R. J. Mathar (mathar(AT)strw.leidenuniv.nl), Oct 04 2008]

KEYWORD

nonn

AUTHOR

Juri-Stepan Gerasimov (2stepan(AT)rambler.ru), Sep 18 2008

EXTENSIONS

More terms from R. J. Mathar (mathar(AT)strw.leidenuniv.nl), Oct 04 2008

STATUS

approved