Table[Round[N[Cos[2 n ArcSin[Sqrt[3]]], 50]], {n, 0, 100}] (* _Artur Jasinski_*)
Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
Table[Round[N[Cos[2 n ArcSin[Sqrt[3]]], 50]], {n, 0, 100}] (* _Artur Jasinski_*)
editing
proposed
proposed
editing
editing
proposed
a(n) = Cos[2n ArcSin[Sqrt[3]] = (-1)^n Cosh[2n ArcSinh[Sqrt[2]].
1, -5, 49, -485, 4801, -47525, 470449, -4656965, 46099201, -456335045, 4517251249, -44716177445, 442644523201, -4381729054565, 43374646022449, -429364731169925, 4250272665676801, -42073361925598085, 416483346590304049
<a href="/index/Rec#order_02">Index to sequences with linear recurrences with constant coefficients</a>, signature (-10,-1).
a(n) = (-1)^n A001079(n).
From Colin Barker, Oct 26 2014: (Start)
a(n) = ((-5-2*sqrt(6))^n+(-5+2*sqrt(6))^n)/2.
a(n) = -10*a(n-1)-a(n-2).
G.f.: (5*x+1) / (x^2+10*x+1).
(End)
(PARI) Vec((5*x+1)/(x^2+10*x+1) + O(x^100)) \\ Colin Barker, Oct 26 2014
Cf. A001079.
sign,easy
a(18) from Colin Barker, Oct 26 2014
approved
editing
_Artur Jasinski (grafix(AT)csl.pl), _, Oct 29 2008
a(n) = Cos[2n ArcSin[Sqrt[3]] = (-1)^n Cosh[2n ArcSinh[Sqrt[2]]
1, -5, 49, -485, 4801, -47525, 470449, -4656965, 46099201, -456335045, 4517251249, -44716177445, 442644523201, -4381729054565, 43374646022449, -429364731169925, 4250272665676801, -42073361925598085
0,2
a(n)=(-1)^n A001079(n).
Table[Round[N[Cos[2 n ArcSin[Sqrt[3]]], 50]], {n, 0, 100}] (*Artur Jasinski*)
sign
Artur Jasinski (grafix(AT)csl.pl), Oct 29 2008
approved