[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Revision History for A146311 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

newer changes | Showing entries 11-19
a(n) = cos(2*n*arcsin(sqrt(3))) = (-1)^n*cosh(2*n*arcsinh(sqrt(2))).
(history; published version)
#9 by Michel Marcus at Sun Oct 26 11:08:30 EDT 2014
MATHEMATICA

Table[Round[N[Cos[2 n ArcSin[Sqrt[3]]], 50]], {n, 0, 100}] (* _Artur Jasinski_*)

Discussion
Sun Oct 26
11:08
Michel Marcus: ok ?
#8 by Michel Marcus at Sun Oct 26 11:07:31 EDT 2014
NAME

a(n) = Cos[2n ArcSin[Sqrt[3]] = (-1)^n Cosh[2n ArcSinh[Sqrt[2]].

a(n) = cos(2*n*arcsin(sqrt(3)) = (-1)^n*cosh(2*n*arcsinh(sqrt(2)).

COMMENTS

Apart from sign, same as A001079, a(n)=(-1)^n A001079 (nsee first formula).

#7 by Michel Marcus at Sun Oct 26 11:05:43 EDT 2014
COMMENTS

With accuracy to Apart from sign that , same as A001079, a(n)=(-1)^n A001079(n).

MATHEMATICA

Table[Round[N[Cos[2 n ArcSin[Sqrt[3]]], 50]], {n, 0, 100}] (* _Artur Jasinski_*)

STATUS

proposed

editing

#6 by Colin Barker at Sun Oct 26 10:47:44 EDT 2014
STATUS

editing

proposed

#5 by Colin Barker at Sun Oct 26 10:34:02 EDT 2014
STATUS

proposed

editing

#4 by Colin Barker at Sun Oct 26 07:05:22 EDT 2014
STATUS

editing

proposed

Discussion
Sun Oct 26
07:27
Joerg Arndt: New name "a(n) = (-1)^n A001079(n)."  ?
10:34
Colin Barker: And how about deleting the comment?
#3 by Colin Barker at Sun Oct 26 07:04:08 EDT 2014
NAME

a(n) = Cos[2n ArcSin[Sqrt[3]] = (-1)^n Cosh[2n ArcSinh[Sqrt[2]].

DATA

1, -5, 49, -485, 4801, -47525, 470449, -4656965, 46099201, -456335045, 4517251249, -44716177445, 442644523201, -4381729054565, 43374646022449, -429364731169925, 4250272665676801, -42073361925598085, 416483346590304049

LINKS

<a href="/index/Rec#order_02">Index to sequences with linear recurrences with constant coefficients</a>, signature (-10,-1).

FORMULA

a(n) = (-1)^n A001079(n).

From Colin Barker, Oct 26 2014: (Start)

a(n) = ((-5-2*sqrt(6))^n+(-5+2*sqrt(6))^n)/2.

a(n) = -10*a(n-1)-a(n-2).

G.f.: (5*x+1) / (x^2+10*x+1).

(End)

PROG

(PARI) Vec((5*x+1)/(x^2+10*x+1) + O(x^100)) \\ Colin Barker, Oct 26 2014

CROSSREFS

Cf. A001079.

KEYWORD

sign,easy

EXTENSIONS

a(18) from Colin Barker, Oct 26 2014

STATUS

approved

editing

#2 by Russ Cox at Sat Mar 31 10:22:14 EDT 2012
AUTHOR

_Artur Jasinski (grafix(AT)csl.pl), _, Oct 29 2008

Discussion
Sat Mar 31
10:22
OEIS Server: https://oeis.org/edit/global/339
#1 by N. J. A. Sloane at Fri Jan 09 03:00:00 EST 2009
NAME

a(n) = Cos[2n ArcSin[Sqrt[3]] = (-1)^n Cosh[2n ArcSinh[Sqrt[2]]

DATA

1, -5, 49, -485, 4801, -47525, 470449, -4656965, 46099201, -456335045, 4517251249, -44716177445, 442644523201, -4381729054565, 43374646022449, -429364731169925, 4250272665676801, -42073361925598085

OFFSET

0,2

COMMENTS

With accuracy to sign that same as A001079, a(n)=(-1)^n A001079(n).

FORMULA

a(n)=(-1)^n A001079(n).

MATHEMATICA

Table[Round[N[Cos[2 n ArcSin[Sqrt[3]]], 50]], {n, 0, 100}] (*Artur Jasinski*)

CROSSREFS
KEYWORD

sign

AUTHOR

Artur Jasinski (grafix(AT)csl.pl), Oct 29 2008

STATUS

approved