editing
proposed
Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
editing
proposed
The generating function of the rationals A060819(n)/a(n) = 1/2 - 1/(n+2), n >= 0, with A060819(0) = 0, mentioned in the comment on a sum by Gary Detlefs above is (1/2)*(1-hypergeom([1, 1], [3], -x/(1-x)))/(1-x) = (x*(2 - x) + 2*(1 - x)*log(1-x) )/(2*(1-x)*x^2). Thanks to him for leading me to Jolley's general remark (201) on p. 38 on such sums. - Wolfdieter Lang, Mar 08 2018
The generating function of the rationals A060819(n)/a(n) = 1/2 - 1/(n+2), n >= 0, with A060819(0) = 0, mentioned in the comment on a sum by Gary Detlefs above is (1/2)*(1-hypergeom([1, 1], [3], -x/(1-x)))/(1-x) = (x*(2 - x) + 2*(1 - x)*log(1-x) )/(2*(1-x)*x^2). Thanks to him for leading me to Jolley's general remark (201) on p. 38 on such sums. - Wolfdieter Lang, Mar 08 2018
The above b(n) also relates rotoinversions (rotation + inversion through the origin) to rotoreflections (rotation + reflection in a plane normal to the rotation axis). An n-fold rotoinversion clockwise is the same as some number of b(n)-fold rotoreflections counterclockwise. The Schoenflies notation for point group symmetry common in chemistry describes improper rotations as rotoreflections, while the International (Hemann-Mauguin) notation favored in crystallography describes them as rotoinversions. - R. James Evans, Nov. 6 06 2024
proposed
editing
editing
proposed
The above b(n) also relates rotoinversions (rotation + inversion through the origin) to rotoreflections (rotation + reflection in a plane normal to the rotation axis). An n-fold rotoinversion clockwise is the same as some number of b(n)-fold rotoreflections counterclockwise. The Schoenflies notation for point group symmetry common in chemistry describes improper rotations as rotoreflections, while the International (Hemann-Mauguin) notation favoured favored in crystallography describes them as rotoinversions. - R. James Evans, Nov. 6 2024
proposed
editing
editing
proposed
The above b(n) also relates rotoinversions (rotation + inversion through the origin) to rotoreflections (rotation + reflection in a plane normal to the rotation axis). An n-fold rotoinversion clockwise is the same as some number of b(n)-fold rotoreflections counterclockwise. The Schoenflies notation for point group symmetry common in chemistry describes improper rotations as rotoreflections, while the International (Hemann-Mauguin) notation favoured in crystallography describes them as rotoinversions. - R. James Evans, Nov. 6 2024
approved
editing
reviewed
approved
proposed
reviewed
editing
proposed