[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Revision History for A144683 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
E.g.f. satisfies: A(x/A(x)^3) = exp(x).
(history; published version)
#5 by Russ Cox at Fri Mar 30 18:37:14 EDT 2012
AUTHOR

_Paul D. Hanna (pauldhanna(AT)juno.com), _, Sep 19 2008

Discussion
Fri Mar 30
18:37
OEIS Server: https://oeis.org/edit/global/213
#4 by N. J. A. Sloane at Sat Dec 31 10:35:47 EST 2011
STATUS

proposed

approved

#3 by Paul D. Hanna at Thu Dec 29 18:06:54 EST 2011
STATUS

editing

proposed

#2 by Paul D. Hanna at Thu Dec 29 18:06:52 EST 2011
FORMULA

E.g.f. satisfies: a(n+1) = [x^n/n!] exp(x)*A(x)^(3*n+3).

EXAMPLE

ILLUSTRATE FORMULA a(n+1) = [x^n/n!] exp(x)*A(x)^(3*n+3) as follows.

Form a table of coefficients of x^k/k! in exp(x)*A(x)^(3*n) for n>=1, k>=0:

exp(x)*A(x)^3: [(1), 4, 34, 685, 27256, 1747159, 159049000, ...];

exp(x)*A(x)^6: [1, (7), 85, 1909, 75193, 4654417, 410053357, ...];

exp(x)*A(x)^9: [1, 10,(154), 3835, 153208, 9284725, 795356632, ...];

exp(x)*A(x)^12:[1, 13, 241, (6625), 272641, 16385713, 1373165425, ...];

exp(x)*A(x)^15:[1, 16, 346, 10441,(446776), 26918851, 2221660936, ...];

exp(x)*A(x)^18:[1, 19, 469, 15445, 690841, (42088609), 3443635405, ...];

exp(x)*A(x)^21:[1, 22, 610, 21799, 1022008, 63371617,(5171653432), ...]; ...

then the terms along the main diagonal form this sequence shift left.

PROG

(PARI) {a(n)=local(A=1+x+sum(k=2, n-1, a(k)*x^k/k!)+x*O(x^n)); if(n==0, 1, (n-1)!*polcoeff(exp(x+x*O(x^n))*A^(3*n), n-1))}

STATUS

approved

editing

#1 by N. J. A. Sloane at Fri Jan 09 03:00:00 EST 2009
NAME

E.g.f. satisfies: A(x/A(x)^3) = exp(x).

DATA

1, 1, 7, 154, 6625, 446776, 42088609, 5171653432, 792466370161, 146737621112464, 32079442602647521, 8134165156479090136, 2358873194743497162889, 773523517692799444058632, 284154419348084944647780289

OFFSET

0,3

FORMULA

E.g.f. satisfies: A(x) = exp( x*A(log A(x))^3 ).

E.g.f. A(x) = G(3x)^(1/3) where G(x/G(x)) = exp(x) and G(x) is the g.f. of A144681.

EXAMPLE

E.g.f. A(x) = 1 + x + 7*x^2/2! + 154*x^3/3! + 6625*x^4/4! +...

PROG

(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(n=0, n, A=exp(serreverse(x/A^3))); n!*polcoeff(A, n)}

CROSSREFS
KEYWORD

nonn

AUTHOR

Paul D. Hanna (pauldhanna(AT)juno.com), Sep 19 2008

STATUS

approved