_Paul D. Hanna (pauldhanna(AT)juno.com), _, Sep 19 2008
Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
_Paul D. Hanna (pauldhanna(AT)juno.com), _, Sep 19 2008
proposed
approved
editing
proposed
E.g.f. satisfies: a(n+1) = [x^n/n!] exp(x)*A(x)^(3*n+3).
ILLUSTRATE FORMULA a(n+1) = [x^n/n!] exp(x)*A(x)^(3*n+3) as follows.
Form a table of coefficients of x^k/k! in exp(x)*A(x)^(3*n) for n>=1, k>=0:
exp(x)*A(x)^3: [(1), 4, 34, 685, 27256, 1747159, 159049000, ...];
exp(x)*A(x)^6: [1, (7), 85, 1909, 75193, 4654417, 410053357, ...];
exp(x)*A(x)^9: [1, 10,(154), 3835, 153208, 9284725, 795356632, ...];
exp(x)*A(x)^12:[1, 13, 241, (6625), 272641, 16385713, 1373165425, ...];
exp(x)*A(x)^15:[1, 16, 346, 10441,(446776), 26918851, 2221660936, ...];
exp(x)*A(x)^18:[1, 19, 469, 15445, 690841, (42088609), 3443635405, ...];
exp(x)*A(x)^21:[1, 22, 610, 21799, 1022008, 63371617,(5171653432), ...]; ...
then the terms along the main diagonal form this sequence shift left.
(PARI) {a(n)=local(A=1+x+sum(k=2, n-1, a(k)*x^k/k!)+x*O(x^n)); if(n==0, 1, (n-1)!*polcoeff(exp(x+x*O(x^n))*A^(3*n), n-1))}
approved
editing
E.g.f. satisfies: A(x/A(x)^3) = exp(x).
1, 1, 7, 154, 6625, 446776, 42088609, 5171653432, 792466370161, 146737621112464, 32079442602647521, 8134165156479090136, 2358873194743497162889, 773523517692799444058632, 284154419348084944647780289
0,3
E.g.f. satisfies: A(x) = exp( x*A(log A(x))^3 ).
E.g.f. A(x) = G(3x)^(1/3) where G(x/G(x)) = exp(x) and G(x) is the g.f. of A144681.
E.g.f. A(x) = 1 + x + 7*x^2/2! + 154*x^3/3! + 6625*x^4/4! +...
(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(n=0, n, A=exp(serreverse(x/A^3))); n!*polcoeff(A, n)}
nonn
Paul D. Hanna (pauldhanna(AT)juno.com), Sep 19 2008
approved