[go: up one dir, main page]

login
Revision History for A133138 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Triangle T(n,k) of the coefficients of the polynomials Q(n,x)=(1+x)[(1+x)^(n-1)+x^(n-1)], Q(0,x)=2.
(history; published version)
#21 by Michel Marcus at Sat May 19 02:29:27 EDT 2018
STATUS

reviewed

approved

#20 by Joerg Arndt at Sat May 19 02:15:53 EDT 2018
STATUS

proposed

reviewed

#19 by Joerg Arndt at Sat May 19 02:15:45 EDT 2018
STATUS

editing

proposed

#18 by Joerg Arndt at Sat May 19 02:15:41 EDT 2018
NAME

Triangle T(n,k) of the coefficients of the polynomials Q(n,x)=(1+x)[(1+x)^(n-1)+x^(n-1)], Q(0,x)=2, in front of x^k.

STATUS

proposed

editing

#17 by Jon E. Schoenfield at Fri May 18 23:42:46 EDT 2018
STATUS

editing

proposed

#16 by Jon E. Schoenfield at Fri May 18 23:42:43 EDT 2018
FORMULA

T(n,k)=A007318(n,k), 0<=k<n-1. T(n,k)=A007318(n,k)+1, n-1<=k<=n. Sum(k=0..n) T(n,k) = A133140(n). - R. J. Mathar, Jun 12 2008

From R. J. Mathar, Jun 12 2008: (Start)

T(n,k) = A007318(n,k), 0 <= k < n-1.

T(n,k) = A007318(n,k)+1, n-1 <= k <= n.

Sum_{k=0..n} T(n,k) = A133140(n). (End)

EXAMPLE

... - Franck Maminirina Ramaharo, May 18 2018

STATUS

proposed

editing

#15 by Franck Maminirina Ramaharo at Fri May 18 17:06:46 EDT 2018
STATUS

editing

proposed

#14 by Franck Maminirina Ramaharo at Fri May 18 17:06:15 EDT 2018
EXAMPLE

n/k 0 1 2 3 4 5 6 7 8 9 10 11 12 13

5: 1 5 10 10 6 2

6: 1 6 15 20 15 7 2

7: 1 7 21 35 35 21 8 2

8: 1 8 28 56 70 56 28 9 2

9: 1 9 36 84 126 126 84 36 10 2

10: 1 10 45 120 210 252 210 120 45 11 2

11: 1 11 55 165 330 462 462 330 165 55 12 2

12: 1 12 66 220 495 792 924 792 495 220 66 13 2

13: 1 13 78 286 715 1287 1716 1716 1287 715 286 78 14 2

#13 by Franck Maminirina Ramaharo at Fri May 18 17:03:33 EDT 2018
EXAMPLE

n/k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

4: 1 4 6 5 2

5: 1 5 10 10 6 2

6: 1 6 15 20 15 7 2

7: 1 7 21 35 35 21 8 2

8: 1 8 28 56 70 56 28 9 2

9: 1 9 36 84 126 126 84 36 10 2

10: 1 10 45 120 210 252 210 120 45 11 2

11: 1 11 55 165 330 462 462 330 165 55 12 2

12: 1 12 66 220 495 792 924 792 495 220 66 13 2

13: 1 13 78 286 715 1287 1716 1716 1287 715 286 78 14 2

14: 1 14 91 364 1001 2002 3003 3432 3003 2002 1001 364 91 15 2

STATUS

proposed

editing

#12 by Franck Maminirina Ramaharo at Fri May 18 16:51:31 EDT 2018
STATUS

editing

proposed