_Jonathan Vos Post (jvospost3(AT)gmail.com) _ and John Sokol (john.sokol(AT)gmail.com), Nov 06 2007
_Jonathan Vos Post (jvospost3(AT)gmail.com) _ and John Sokol (john.sokol(AT)gmail.com), Nov 06 2007
editing
approved
T. L. Todorova, D. I. Tolev, <a href="http://arXiv.org/pdfabs/0711.0171">On the distribution of alpha p modulo one for primes p of a special form</a>, Nov 1, 2007.
approved
editing
nonn,new
nonn
Jonathan Vos Post (jvospost2jvospost3(AT)yahoogmail.com) and John Sokol (john.sokol(AT)gmail.com), Nov 06 2007
T. L. Todorova, D. I. Tolev, <a href="http://arxivarXiv.org/pdf/0711.0171">On the distribution of alpha p modulo one for primes p of a special form</a>, Nov 1, 2007.
nonn,new
nonn
*** please list as 2nd author "John Sokol" <john.sokol@gmail.com> who wrote the "C code + some creative awk and sort unix command line stuff." ***
nonn,new
nonn
Number of order-independent ways to represent 24*n+5 as the sum of squares of exactly 5 primes.
0, 0, 0, 1, 1, 2, 1, 2, 2, 3, 3, 3, 2, 4, 3, 5, 3, 5, 6, 5, 6, 6, 5, 8, 6, 9, 6, 7, 10, 8, 9, 9, 8, 10, 8, 11, 8, 8, 13, 11, 10, 11, 11, 14, 10, 14, 13, 9, 17, 13, 12, 15, 13, 17, 11, 15, 17, 10, 17, 17, 14, 17, 16, 19, 12, 17, 19, 13, 18, 17, 14, 17, 17, 23, 16
0,6
Hua proved in 1938 that every sufficiently large integer n congruent to 5 mod 24 can be written as the sum of the squares of exactly 5 primes.
L. K. Hua, Some results in the additive prime number theory, Quart J. Math., Oxford, 9 (1938) 68-80.
T. L. Todorova, D. I. Tolev, <a href="http://arxiv.org/pdf/0711.0171">On the distribution of alpha p modulo one for primes p of a special form</a>, Nov 1, 2007.
a(3) = 1 because the only way, up to permutation, to represent 24*n+5 as the sum of squares of exactly 5 primes is 77 = 5 + 24*3 = 5^2 + 5^2 + 3^2 + 3^2 + 3^2.
a(5) = 2 because 125 = 5 + 24*5 = 5^2 + 5^2 + 5^2 + 5^2 + 5^2 = 7^2 + 7^2 + 3^2 + 3^2 + 3^2.
a(9) = 3 because 221 = 5 + 24*9 = 11^2 + 5^2 + 5^2 + 5^2 + 5^2 = 13^2 + 5^2 + 3^2 + 3^2 + 3^2 = 7^2 + 7^2 + 7^2 + 7^2 + 5^2.
a(13) = 4 because 317 = 5 + 24*13 = 11^2 + 11^2 + 5^2 + 5^2 + 5^2 = 11^2 + 7^2 + 7^2 + 7^2 + 7^2 = 13^2 + 11^2 + 3^2 + 3^2 + 3^2 = 13^2 + 7^2 + 7^2 + 5^2 + 5^2.
a(15) = 5 because 365 = 5 + 24*15 = 11^2 + 11^2 + 7^2 + 7^2 + 5^2 = 13^2 + 11^2 + 5^2 + 5^2 + 5^2 = 13^2 + 13^2 + 3^2 + 3^2 + 3^2 = 13^2 + 7^2 + 7^2 + 7^2 + 7^2 = 17^2 + 7^2 + 3^2 + 3^2 + 3^2.
a(18) = 6 because 437 = 5 + 24*18 = 11^2 + 11^2 + 11^2 + 7^2 + 5^2 = 13^2 + 11^2 + 7^2 +7^2 + 7^2 = 13^2 + 13^2 + 7^2 + 5^2 + 5^2 = 17^2 + 11^2 + 3^2 + 3^2 + 3^2 = 17^2 + 7^2 + 7^2 + 5^2 + 5^2 = 19^2 + 7^2 + 3^2 + 3^2 + 3^2 = 19^2 + 7^2 + 3^2 + 3^2 + 3^2.
a(23) = 8 because 557 = 5 + 24*23 = 13^2 + 11^2 + 11^2 + 11^2 + 5^2 = 13^2 + 13^2 + 11^2 + 7^2 + 7^2 = 13^2 + 13^2 + 13^2 + 5^2 + 5^2 = 17^2 + 11^2 + 7^2 + 7^2 + 7^2 = 17^2 + 13^2 + 7^2 + 5^2 + 5^2 = 19^2 + 11^2 + 5^2 + 5^2 + 5^2 = 19^2 + 13^2 + 3^2 + 3^2 + 3^2 = 19^2 + 7^2 + 7^2 + 7^2 + 7^2.
*** please list as 2nd author "John Sokol" <john.sokol@gmail.com> who wrote the "C code + some creative awk and sort unix command line stuff." ***
nonn,new
Jonathan Vos Post (jvospost2(AT)yahoo.com) and John Sokol (john.sokol(AT)gmail.com), Nov 06 2007
approved