editing
approved
Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
editing
approved
a(1)=5 is the least integer m>0 such that A136117(1)-P(m) is a pentagonal number, namely P(7)-P(5)=70-35=35=P(5).
a(2)=4 is the least integer m>0 such that A136117(2)-P(m) is a pentagonal number, namely P(8)-P(4)=92-22=70=P(7).
namely P(7)-P(5)=70-35=35=P(5).
a(2)=4 is the least integer m>0 such that A136117(2)-P(m)
is a pentagonal number,
namely P(8)-P(4)=92-22=70=P(7).
(PARI) A136118vect(n, i=-1)=vector(n, k, until(0, for(j=2, #n=sum2sqr((i+=6)^2+1), n[j]%6==[5, 5]||next; n=n[j]; break(2))); n[1]\6+1) /* This uses sum2sqr(), cf. A133388. Below some simpler but much slower code: */ P(n)=n*(3*n-1)/2 /* a.k.a. A000326 */ /*****newline*****/ isPent(t)=P(sqrtint(t*2\3)+1)==t /*****newline*****/ for(i=1, 299, for(j=1, (i+1)\sqrt(2), isPent(P(i)-P(j))&print1(j", ")|next(2)))
my(P=A000326(n)=n*(3*n-1)/2, isPent(t)=P(sqrtint(t*2\3)+1)==t); for(i=1, 299, for(j=1, (i+1)\sqrt(2), isPent(P(i)-P(j))&print1(j", ")||next(2)))
approved
editing
_M. F. Hasler (Maximilian.Hasler(AT)gmail.com), _, Dec 25 2007
5, 4, 7, 12, 19, 17, 25, 20, 10, 28, 45, 42, 39, 17, 37, 21, 36, 35, 13, 33, 65, 28, 67, 32, 52, 40, 74, 31, 70, 85, 35, 16, 60, 70, 77, 68, 42, 30, 105, 76, 59, 26, 74, 49, 115, 19, 125, 115, 102, 110, 92, 56, 103, 29, 145, 100, 114, 77, 92, 47, 63, 108, 152, 95, 22, 116
1,1
(PARI) A136118vect(n, i=-1)=vector(n, k, until(0, for(j=2, #n=sum2sqr((i+=6)^2+1), n[j]%6==[5, 5]|next; n=n[j]; break(2))); n[1]\6+1) /* This uses sum2sqr(), cf. A133388. Below some simpler but much slower code: */ P(n)=n*(3*n-1)/2 /* a.k.a. A000326 */ /*****newline*****/ isPent(t)=P(sqrtint(t*2\3)+1)==t /*****newline*****/ for(i=1, 299, for(j=1, (i+1)\sqrt(2), isPent(P(i)-P(j))&print1(j", ")|next(2)))
nonn
M. F. Hasler (Maximilian.Hasler(AT)gmail.com), Dec 25 2007
approved