[go: up one dir, main page]

login
Revision History for A129993 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Nonnegative values x of solutions (x, y) to the Diophantine equation x^2 + (x+199)^2 = y^2.
(history; published version)
#17 by Charles R Greathouse IV at Thu Sep 08 08:45:30 EDT 2022
PROG

(MAGMAMagma) I:=[0, 21, 504, 597, 704, 3441, 3980]; [n le 7 select I[n] else Self(n-1) + 6*Self(n-3) - 6*Self(n-4) - Self(n-6) + Self(n-7): n in [1..50]]; // G. C. Greubel, Mar 31 2018

Discussion
Thu Sep 08
08:45
OEIS Server: https://oeis.org/edit/global/2944
#16 by N. J. A. Sloane at Sat Feb 15 10:52:27 EST 2020
AUTHOR

_Mohamed Bouhamida (bhmd95(AT)yahoo.fr), _, Jun 14 2007

Discussion
Sat Feb 15
10:52
OEIS Server: https://oeis.org/edit/global/2849
#15 by Alois P. Heinz at Sat Mar 31 14:26:43 EDT 2018
STATUS

proposed

approved

#14 by Jon E. Schoenfield at Sat Mar 31 14:25:57 EDT 2018
STATUS

editing

proposed

#13 by Jon E. Schoenfield at Sat Mar 31 14:25:55 EDT 2018
NAME

Nonnegative values x of solutions (x, y) to the Diophantine equation x^2 + (x+199)^2 = y^2.

COMMENTS

lim_Lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).

lim_Lim_{n -> infinity} a(n)/a(n-1) = (201+20*sqrt(2))/199 for n mod 3 = {1, 2}.

lim_Lim_{n -> infinity} a(n)/a(n-1) = (91443+58282*sqrt(2))/199^2 for n mod 3 = 0.

FORMULA

a(n) = 6*a(n-3) - a(n-6) + 398 for n > 6; a(1)=0, a(2)=21, a(3)=504, a(4)=597, a(5)=704, a(6)=3441.

a(1)=0, a(2)=21, a(3)=504, a(4)=597, a(5)=704, a(6)=3441, a(7)=3980, a(n)=a(n-1)+6*a(n-3)-6*a(n-4)-a(n-6)+a(n-7) From _. - _Harvey P. Dale_, Jun 03 2012

STATUS

proposed

editing

#12 by G. C. Greubel at Sat Mar 31 02:46:26 EDT 2018
STATUS

editing

proposed

#11 by G. C. Greubel at Sat Mar 31 02:46:20 EDT 2018
LINKS

G. C. Greubel, <a href="/A129993/b129993.txt">Table of n, a(n) for n = 1..1000</a>

FORMULA

a(n) = 6*a(n-3) -a(n-6) +398 for n > 6; a(1)=0, a(2)=21, a(3)=504, a(4)=597, a(5)=704, a(6)=3441.

PROG

(PARI) {forstep(n=0, 500000000, [1, 3], if(issquare(2*n^2+398*n+39601), print1(n, ", ")))};

(MAGMA) I:=[0, 21, 504, 597, 704, 3441, 3980]; [n le 7 select I[n] else Self(n-1) + 6*Self(n-3) - 6*Self(n-4) - Self(n-6) + Self(n-7): n in [1..50]]; // G. C. Greubel, Mar 31 2018

STATUS

approved

editing

#10 by Charles R Greathouse IV at Sun Jun 18 02:25:46 EDT 2017
LINKS

<a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,6,-6,0,-1,1).

Discussion
Sun Jun 18
02:25
OEIS Server: https://oeis.org/edit/global/2678
#9 by Charles R Greathouse IV at Sat Jun 13 00:52:22 EDT 2015
LINKS

<a href="/index/Rec">Index to sequences with entries for linear recurrences with constant coefficients</a>, signature (1,0,6,-6,0,-1,1).

Discussion
Sat Jun 13
00:52
OEIS Server: https://oeis.org/edit/global/2439
#8 by Charles R Greathouse IV at Fri Jun 12 15:26:23 EDT 2015
LINKS

<a href="/index/Rea#recLCCRec">Index to sequences with linear recurrences with constant coefficients</a>, signature (1,0,6,-6,0,-1,1).

Discussion
Fri Jun 12
15:26
OEIS Server: https://oeis.org/edit/global/2436