[go: up one dir, main page]

login
Revision History for A127584 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
#7 by Russ Cox at Fri Mar 30 16:50:40 EDT 2012
AUTHOR

_N. J. A. Sloane (njas(AT)research.att.com), _, Jul 23 2008

Discussion
Fri Mar 30
16:50
OEIS Server: https://oeis.org/edit/global/110
#6 by Charles R Greathouse IV at Mon Jan 30 21:59:20 EST 2012
STATUS

editing

approved

#5 by Charles R Greathouse IV at Mon Jan 30 21:56:37 EST 2012
KEYWORD

nonn,base

STATUS

approved

editing

#4 by N. J. A. Sloane at Fri Feb 27 03:00:00 EST 2009
KEYWORD

nonn,new

nonn

AUTHOR

N. J. A. Sloane (njas, (AT)research.att.com), Jul 23 2008

#3 by N. J. A. Sloane at Fri Jan 09 03:00:00 EST 2009
NAME

Triangular sequence produced from symmetrical power of two matrices of the general type: M={{1, 2, 4, 8}, {2, 1, 2, 4}, {4, 2, 1, 2}, {8, 4, 2, 1}};.

A007376(4n+3).

DATA

3, 7, 0, 2, 4, 6, 8, 0, 2, 4, 6, 8, 0, 2, 4, 6, 8, 0, 2, 4, 6, 8, 0, 2, 4, 6, 8, 0, 2, 4, 6, 8, 0, 2, 4, 6, 8, 0, 2, 4, 6, 8, 0, 2, 4, 6, 8, 0, 1, 1, 0, 5, 1, 0, 9, 1, -1, -3, -1, 1, 7, 1, 2, 1, 1, 2, 5, 1, 2, 9, 21, 1, 3, 3, 1, 3, -7, 1, 4, 1, 1, 4, 5, 1, -27, -108, -102, -4, 9, 1, 5, 3, 1, 81, 459, 810, 438, 5, -7, 1, -243, -1782, -4617, -4932, -1797, -6, 1, 729, 6561, 22437, 36045, 26811, 7251, 7, -1, -2187, -23328, -99144, -213192, -242190, -136080, -29088, -8, 6, 5, 1, 6561, 80919, 411156, 1109052, 1702782, 1475010, 660420, 116460, 6, 9, 1, 7, 3, 1, 7

OFFSET

1,4

0,1

COMMENTS

These matrices are related to symmetrical autocorrelation matrices. First column is alternating powers of 3. Absolute value row sum is ( new to OEIS too): Flatten[Join[{{1}}, Table[Apply[Plus,Abs[CoefficientList[CharacteristicPolynomial[ M[d, a], x], x]]], {d, 1, 10}]]]; {1, 2, 6, 34, 242, 1794, 13378, 99842, 745218, 5562370, 41518082}

REFERENCES

MathRev083099.nb at Mathematica tutorial: http://www.arec.umd.edu/mathrev/LecturesMR99.ZIP/

FORMULA

I'm sorry the definition isn't easier, but this is what seems to work: Function of matrix definition: ( needs all four variables) t(n, m, d, a) := If[n == m, 1, If[n - m <= d - 1 || m - n <= d - 1, a^Abs[n - m], 0]]; Matrix definition for general constant "a": M(d, a) := Table[t[n, m, d, a], {n, 1, d}, {m, 1, d}]; Constant: a=2; a(n)=CoefficientList(CharacteristicPloynomial(M(d,2))

EXAMPLE

Triangle begins:

{1},

{1, -1},

{-3, -2, 1},

{9, 21, 3, -1},

{-27, -108, -102, -4, 1},

{81, 459, 810, 438, 5, -1},

{-243, -1782, -4617, -4932, -1797, -6, 1}

MATHEMATICA

t[n_, m_, d_, a_] := If[n == m, 1, If[n - m <= d - 1 || m - n <= d - 1, a^Abs[n - m], 0]]; M[d_, a_] := Table[t[n, m, d, a], {n, 1, d}, {m, 1, d}]; a = 2; a0 = Join[{{1}}, Table[CoefficientList[CharacteristicPolynomial[M[d, a], x], x], {d, 1, 10}]]; Flatten[a0]

KEYWORD

nonn,tabl,uned,new

nonn

AUTHOR

Roger L. Bagula (rlbagulatftn(AT)yahoo.com), Jun 10 2007

njas, Jul 23 2008

#2 by N. J. A. Sloane at Sat Nov 10 03:00:00 EST 2007
NAME

Least prime number of the form k 2^n + 2^n - 1 (k=1,1,2,3,..; n=1,2,3,..).

Triangular sequence produced from symmetrical power of two matrices of the general type: M={{1, 2, 4, 8}, {2, 1, 2, 4}, {4, 2, 1, 2}, {8, 4, 2, 1}};.

DATA

1, 1, -1, -3, -2, 1, 9, 21, 3, -1, -27, -108, -102, -4, 1, 81, 459, 810, 438, 5, -1, -243, -1782, -4617, -4932, -1797, -6, 1, 729, 6561, 22437, 36045, 26811, 7251, 7, 23, 31, 127, 127, 383, 1279, 3583, 5119, 6143, 8191, 73727, 81919, 131071, 131071, 524287, 524287, 14680063, 14680063, 14680063, 109051903, 109051903, 654311423, 738197503, 738197503, 2147483647, 2147483647, 2147483647-1, -2187, -23328, -99144, -213192, -242190, -136080, -29088, -8, 1, 6561, 80919, 411156, 1109052, 1702782, 1475010, 660420, 116460, 9

OFFSET

0,1

1,4

COMMENTS

These matrices are related to symmetrical autocorrelation matrices. First column is alternating powers of 3. Absolute value row sum is ( new to OEIS too): Flatten[Join[{{1}}, Table[Apply[Plus,Abs[CoefficientList[CharacteristicPolynomial[ M[d, a], x], x]]], {d, 1, 10}]]]; {1, 2, 6, 34, 242, 1794, 13378, 99842, 745218, 5562370, 41518082}

REFERENCES

MathRev083099.nb at Mathematica tutorial: http://www.arec.umd.edu/mathrev/LecturesMR99.ZIP/

FORMULA

I'm sorry the definition isn't easier, but this is what seems to work: Function of matrix definition: ( needs all four variables) t(n, m, d, a) := If[n == m, 1, If[n - m <= d - 1 || m - n <= d - 1, a^Abs[n - m], 0]]; Matrix definition for general constant "a": M(d, a) := Table[t[n, m, d, a], {n, 1, d}, {m, 1, d}]; Constant: a=2; a(n)=CoefficientList(CharacteristicPloynomial(M(d,2))

EXAMPLE

a(3)=7 because A007522(1)=7

Triangle begins:

{1},

{1, -1},

{-3, -2, 1},

{9, 21, 3, -1},

{-27, -108, -102, -4, 1},

{81, 459, 810, 438, 5, -1},

{-243, -1782, -4617, -4932, -1797, -6, 1}

MAPLE

a = {}; Do[k = 1; While[ !PrimeQ[k 2^n + 2^n - 1], k++ ]; AppendTo[a, k 2^n + 2^n - 1], {n, 1, 50}]; a

MATHEMATICA

t[n_, m_, d_, a_] := If[n == m, 1, If[n - m <= d - 1 || m - n <= d - 1, a^Abs[n - m], 0]]; M[d_, a_] := Table[t[n, m, d, a], {n, 1, d}, {m, 1, d}]; a = 2; a0 = Join[{{1}}, Table[CoefficientList[CharacteristicPolynomial[M[d, a], x], x], {d, 1, 10}]]; Flatten[a0]

KEYWORD

nonn,tabl,uned,new

AUTHOR

Artur Jasinski Roger L. Bagula (grafixrlbagulatftn(AT)cslyahoo.plcom), Jan 19 Jun 10 2007

EXTENSIONS

Something seems to have gone wrong with A127581-A127584 - they need editing. - njas, Jan 21 2007

#1 by N. J. A. Sloane at Fri May 11 03:00:00 EDT 2007
NAME

Least prime number of the form k 2^n + 2^n - 1 (k=1,1,2,3,..; n=1,2,3,..).

DATA

3, 7, 23, 31, 127, 127, 383, 1279, 3583, 5119, 6143, 8191, 73727, 81919, 131071, 131071, 524287, 524287, 14680063, 14680063, 14680063, 109051903, 109051903, 654311423, 738197503, 738197503, 2147483647, 2147483647, 2147483647

OFFSET

0,1

EXAMPLE

a(3)=7 because A007522(1)=7

MAPLE

a = {}; Do[k = 1; While[ !PrimeQ[k 2^n + 2^n - 1], k++ ]; AppendTo[a, k 2^n + 2^n - 1], {n, 1, 50}]; a

KEYWORD

nonn,uned

AUTHOR

Artur Jasinski (grafix(AT)csl.pl), Jan 19 2007

EXTENSIONS

Something seems to have gone wrong with A127581-A127584 - they need editing. - njas, Jan 21 2007

STATUS

approved