_N. J. A. Sloane (njas(AT)research.att.com), _, Jul 23 2008
_N. J. A. Sloane (njas(AT)research.att.com), _, Jul 23 2008
editing
approved
nonn,base
approved
editing
nonn,new
nonn
N. J. A. Sloane (njas, (AT)research.att.com), Jul 23 2008
Triangular sequence produced from symmetrical power of two matrices of the general type: M={{1, 2, 4, 8}, {2, 1, 2, 4}, {4, 2, 1, 2}, {8, 4, 2, 1}};.
A007376(4n+3).
3, 7, 0, 2, 4, 6, 8, 0, 2, 4, 6, 8, 0, 2, 4, 6, 8, 0, 2, 4, 6, 8, 0, 2, 4, 6, 8, 0, 2, 4, 6, 8, 0, 2, 4, 6, 8, 0, 2, 4, 6, 8, 0, 2, 4, 6, 8, 0, 1, 1, 0, 5, 1, 0, 9, 1, -1, -3, -1, 1, 7, 1, 2, 1, 1, 2, 5, 1, 2, 9, 21, 1, 3, 3, 1, 3, -7, 1, 4, 1, 1, 4, 5, 1, -27, -108, -102, -4, 9, 1, 5, 3, 1, 81, 459, 810, 438, 5, -7, 1, -243, -1782, -4617, -4932, -1797, -6, 1, 729, 6561, 22437, 36045, 26811, 7251, 7, -1, -2187, -23328, -99144, -213192, -242190, -136080, -29088, -8, 6, 5, 1, 6561, 80919, 411156, 1109052, 1702782, 1475010, 660420, 116460, 6, 9, 1, 7, 3, 1, 7
1,4
0,1
These matrices are related to symmetrical autocorrelation matrices. First column is alternating powers of 3. Absolute value row sum is ( new to OEIS too): Flatten[Join[{{1}}, Table[Apply[Plus,Abs[CoefficientList[CharacteristicPolynomial[ M[d, a], x], x]]], {d, 1, 10}]]]; {1, 2, 6, 34, 242, 1794, 13378, 99842, 745218, 5562370, 41518082}
MathRev083099.nb at Mathematica tutorial: http://www.arec.umd.edu/mathrev/LecturesMR99.ZIP/
I'm sorry the definition isn't easier, but this is what seems to work: Function of matrix definition: ( needs all four variables) t(n, m, d, a) := If[n == m, 1, If[n - m <= d - 1 || m - n <= d - 1, a^Abs[n - m], 0]]; Matrix definition for general constant "a": M(d, a) := Table[t[n, m, d, a], {n, 1, d}, {m, 1, d}]; Constant: a=2; a(n)=CoefficientList(CharacteristicPloynomial(M(d,2))
Triangle begins:
{1},
{1, -1},
{-3, -2, 1},
{9, 21, 3, -1},
{-27, -108, -102, -4, 1},
{81, 459, 810, 438, 5, -1},
{-243, -1782, -4617, -4932, -1797, -6, 1}
t[n_, m_, d_, a_] := If[n == m, 1, If[n - m <= d - 1 || m - n <= d - 1, a^Abs[n - m], 0]]; M[d_, a_] := Table[t[n, m, d, a], {n, 1, d}, {m, 1, d}]; a = 2; a0 = Join[{{1}}, Table[CoefficientList[CharacteristicPolynomial[M[d, a], x], x], {d, 1, 10}]]; Flatten[a0]
nonn,tabl,uned,new
nonn
Roger L. Bagula (rlbagulatftn(AT)yahoo.com), Jun 10 2007
njas, Jul 23 2008
Least prime number of the form k 2^n + 2^n - 1 (k=1,1,2,3,..; n=1,2,3,..).
Triangular sequence produced from symmetrical power of two matrices of the general type: M={{1, 2, 4, 8}, {2, 1, 2, 4}, {4, 2, 1, 2}, {8, 4, 2, 1}};.
1, 1, -1, -3, -2, 1, 9, 21, 3, -1, -27, -108, -102, -4, 1, 81, 459, 810, 438, 5, -1, -243, -1782, -4617, -4932, -1797, -6, 1, 729, 6561, 22437, 36045, 26811, 7251, 7, 23, 31, 127, 127, 383, 1279, 3583, 5119, 6143, 8191, 73727, 81919, 131071, 131071, 524287, 524287, 14680063, 14680063, 14680063, 109051903, 109051903, 654311423, 738197503, 738197503, 2147483647, 2147483647, 2147483647-1, -2187, -23328, -99144, -213192, -242190, -136080, -29088, -8, 1, 6561, 80919, 411156, 1109052, 1702782, 1475010, 660420, 116460, 9
0,1
1,4
These matrices are related to symmetrical autocorrelation matrices. First column is alternating powers of 3. Absolute value row sum is ( new to OEIS too): Flatten[Join[{{1}}, Table[Apply[Plus,Abs[CoefficientList[CharacteristicPolynomial[ M[d, a], x], x]]], {d, 1, 10}]]]; {1, 2, 6, 34, 242, 1794, 13378, 99842, 745218, 5562370, 41518082}
MathRev083099.nb at Mathematica tutorial: http://www.arec.umd.edu/mathrev/LecturesMR99.ZIP/
I'm sorry the definition isn't easier, but this is what seems to work: Function of matrix definition: ( needs all four variables) t(n, m, d, a) := If[n == m, 1, If[n - m <= d - 1 || m - n <= d - 1, a^Abs[n - m], 0]]; Matrix definition for general constant "a": M(d, a) := Table[t[n, m, d, a], {n, 1, d}, {m, 1, d}]; Constant: a=2; a(n)=CoefficientList(CharacteristicPloynomial(M(d,2))
a(3)=7 because A007522(1)=7
Triangle begins:
{1},
{1, -1},
{-3, -2, 1},
{9, 21, 3, -1},
{-27, -108, -102, -4, 1},
{81, 459, 810, 438, 5, -1},
{-243, -1782, -4617, -4932, -1797, -6, 1}
a = {}; Do[k = 1; While[ !PrimeQ[k 2^n + 2^n - 1], k++ ]; AppendTo[a, k 2^n + 2^n - 1], {n, 1, 50}]; a
t[n_, m_, d_, a_] := If[n == m, 1, If[n - m <= d - 1 || m - n <= d - 1, a^Abs[n - m], 0]]; M[d_, a_] := Table[t[n, m, d, a], {n, 1, d}, {m, 1, d}]; a = 2; a0 = Join[{{1}}, Table[CoefficientList[CharacteristicPolynomial[M[d, a], x], x], {d, 1, 10}]]; Flatten[a0]
nonn,tabl,uned,new
Artur Jasinski Roger L. Bagula (grafixrlbagulatftn(AT)cslyahoo.plcom), Jan 19 Jun 10 2007
Least prime number of the form k 2^n + 2^n - 1 (k=1,1,2,3,..; n=1,2,3,..).
3, 7, 23, 31, 127, 127, 383, 1279, 3583, 5119, 6143, 8191, 73727, 81919, 131071, 131071, 524287, 524287, 14680063, 14680063, 14680063, 109051903, 109051903, 654311423, 738197503, 738197503, 2147483647, 2147483647, 2147483647
0,1
a(3)=7 because A007522(1)=7
a = {}; Do[k = 1; While[ !PrimeQ[k 2^n + 2^n - 1], k++ ]; AppendTo[a, k 2^n + 2^n - 1], {n, 1, 50}]; a
nonn,uned
Artur Jasinski (grafix(AT)csl.pl), Jan 19 2007
approved