[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Revision History for A127420 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Triangle, read by rows, where row n+1 is generated from row n by first inserting zeros at positions {(m+2)*(m+3)/2, m>=0} in row n and then taking the partial sums in reverse order, for n>=2, starting with 1's in the initial two rows.
(history; published version)
#6 by Bruno Berselli at Fri Apr 12 01:40:35 EDT 2013
STATUS

proposed

approved

#5 by Michel Marcus at Fri Apr 12 01:09:45 EDT 2013
STATUS

editing

proposed

#4 by Michel Marcus at Fri Apr 12 01:09:40 EDT 2013
KEYWORD

nonn,tabltabf

STATUS

approved

editing

#3 by Russ Cox at Fri Mar 30 18:37:03 EDT 2012
AUTHOR

_Paul D. Hanna (pauldhanna(AT)juno.com), _, Jan 14 2007

Discussion
Fri Mar 30
18:37
OEIS Server: https://oeis.org/edit/global/213
#2 by N. J. A. Sloane at Sat Nov 10 03:00:00 EST 2007
KEYWORD

nonn,tabl,new

AUTHOR

Paul D . Hanna (pauldhanna(AT)juno.com), Jan 14 2007

#1 by N. J. A. Sloane at Fri May 11 03:00:00 EDT 2007
NAME

Triangle, read by rows, where row n+1 is generated from row n by first inserting zeros at positions {(m+2)*(m+3)/2, m>=0} in row n and then taking the partial sums in reverse order, for n>=2, starting with 1's in the initial two rows.

DATA

1, 1, 1, 2, 1, 1, 4, 2, 2, 1, 9, 5, 5, 3, 1, 1, 24, 15, 15, 10, 5, 5, 2, 1, 77, 53, 53, 38, 23, 23, 13, 8, 3, 3, 1, 295, 218, 218, 165, 112, 112, 74, 51, 28, 28, 15, 7, 4, 1, 1, 1329, 1034, 1034, 816, 598, 598, 433, 321, 209, 209, 135, 84, 56, 28, 28, 13, 6, 2, 1, 6934, 5605

OFFSET

0,4

COMMENTS

Column 0 forms A091352, which also equals column 1 of table A125781, where table A125781 is generated by a complementary recurrence of this triangle. The number of terms in row n is A127419(n).

EXAMPLE

To generate row 6, start with row 5:

24, 15, 15, 10, 5, 5, 2, 1;

insert zeros at positions [1,4,8,13,..., (m+2)*(m+3)/2 - 2,...]:

24, 0, 15, 15, 0, 10, 5, 5, 0, 2, 1;

then row 6 equals the partial sums of row 5 taken in reverse order:

24, _0, 15, 15, _0, 10, _5, 5, 0, 2, 1;

77, 53, 53, 38, 23, 23, 13, 8, 3, 3, 1.

Triangle begins:

1;

1, 1;

2, 1, 1;

4, 2, 2, 1;

9, 5, 5, 3, 1, 1;

24, 15, 15, 10, 5, 5, 2, 1;

77, 53, 53, 38, 23, 23, 13, 8, 3, 3, 1;

295, 218, 218, 165, 112, 112, 74, 51, 28, 28, 15, 7, 4, 1, 1;

1329, 1034, 1034, 816, 598, 598, 433, 321, 209, 209, 135, 84, 56, 28, 28, 13, 6, 2, 1;

Column 0 of this triangle equals column 1 of triangle A091351, where triangle A091351 begins:

1;

1, 1;

1, 2, 1;

1, 4, 3, 1;

1, 9, 9, 4, 1;

1, 24, 30, 16, 5, 1;

1, 77, 115, 70, 25, 6, 1;

1, 295, 510, 344, 135, 36, 7, 1; ...

and column k of A091351 = row sums of matrix power A091351^k for k>=0.

CROSSREFS
KEYWORD

nonn,tabl

AUTHOR

Paul D Hanna (pauldhanna(AT)juno.com), Jan 14 2007

STATUS

approved