reviewed
approved
reviewed
approved
proposed
reviewed
editing
proposed
f[n_] := Block[{p = 2, q = n/2}, While[ !PrimeQ[p] || !PrimeQ[n - p], p++ ]; While[ !PrimeQ[q] || !PrimeQ[n - q], q-- ]; q - p]; t = Table[0, {10000}]; Do[a = f[2n]; If[a < 10000 && t[[a/2 + 1]] == 0, t[[a/2 + 1]] = 2n], {n, 2, 10^6}]; Take[ 2*Flatten[ Position[t, 0] - 1], 52]
t = Table[0, {10000}];
Do[a = f[2n]; If[a < 10000 && t[[a/2 + 1]] == 0, t[[a/2 + 1]] = 2n], {n, 2, 10^6}];
Take[ 2*Flatten[ Position[t, 0] - 1], 52]
proposed
editing
editing
proposed
Corrected by _T. D. Noe, _, Feb 14 2011
approved
editing
_Robert G. Wilson v (rgwv(AT)rgwv.com), _, Sep 05 2005
proposed
approved
It is conjectured that there does not exist a Goldbach partition yielding a Goldbach "gap" of n as defined, for n=60,64,58,62,82,....
f[n_] := Block[{p = 2, q = n/2}, While[ !PrimeQ[p] || !PrimeQ[n - p], p++ ]; While[ !PrimeQ[q] || !PrimeQ[n - q], q-- ]; q - p]; t = Table[0, {10000}]; Do[a = f[2n]; If[a < 10000 && t[[a/2 + 1]] == 0, t[[a/2 + 1]] = 2n], {n, 2, 10^6}]; Take[ 2Flatten2*Flatten[ Position[t, 0] - 1], 52]