[go: up one dir, main page]

login
Revision History for A117270 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Matrix log of triangle M = A117269, which satisfies: M - (M-I)^2 = C where C is Pascal's triangle.
(history; published version)
#4 by Russ Cox at Fri Mar 30 18:36:56 EDT 2012
AUTHOR

_Paul D. Hanna (pauldhanna(AT)juno.com), _, Mar 05 2006

Discussion
Fri Mar 30
18:36
OEIS Server: https://oeis.org/edit/global/213
#3 by N. J. A. Sloane at Fri Feb 27 03:00:00 EST 2009
COMMENTS

E.g.f. of column 0 (A117271) is log( (3-sqrt(5-4*exp(x)))/2 ), and equals the log of the g.f. of column 0 of A117269.

KEYWORD

nonn,tabl,new

#2 by N. J. A. Sloane at Sat Nov 10 03:00:00 EST 2007
KEYWORD

nonn,tabl,new

AUTHOR

Paul D . Hanna (pauldhanna(AT)juno.com), Mar 05 2006

#1 by N. J. A. Sloane at Fri Feb 24 03:00:00 EST 2006
NAME

Matrix log of triangle M = A117269, which satisfies: M - (M-I)^2 = C where C is Pascal's triangle.

DATA

0, 1, 0, 2, 2, 0, 12, 6, 3, 0, 134, 48, 12, 4, 0, 2100, 670, 120, 20, 5, 0, 42302, 12600, 2010, 240, 30, 6, 0, 1041852, 296114, 44100, 4690, 420, 42, 7, 0, 30331814, 8334816, 1184456, 117600, 9380, 672, 56, 8, 0, 1019056260, 272986326, 37506672, 3553368

OFFSET

0,4

COMMENTS

E.g.f. of column 0 (A117271) is log( (3-sqrt(5-4*exp(x)))/2 ), and equals the log of the g.f. of column 0 of A117269.

FORMULA

T(n,k) = A117271(n-k)*C(n,k).

EXAMPLE

Triangle begins:

0;

1,0;

2,2,0;

12,6,3,0;

134,48,12,4,0;

2100,670,120,20,5,0;

42302,12600,2010,240,30,6,0;

1041852,296114,44100,4690,420,42,7,0; ...

PROG

(PARI) {a(n)=local(C=matrix(n+1, n+1, r, c, if(r>=c, binomial(r-1, c-1))), M=C, L); for(i=1, n+1, M=(M-M^0)^2+C); L=sum(r=1, #M, -(M^0-M)^r/r); return(L[n+1, 1])}

CROSSREFS

Cf. A117269, A117271 (column 0).

KEYWORD

nonn,tabl

AUTHOR

Paul D Hanna (pauldhanna(AT)juno.com), Mar 05 2006

STATUS

approved