[go: up one dir, main page]

login
Revision History for A092513 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Decimal expansion of e^7.
(history; published version)
#18 by Charles R Greathouse IV at Sun Oct 02 23:11:26 EDT 2022
STATUS

editing

approved

#17 by Charles R Greathouse IV at Sun Oct 02 23:11:23 EDT 2022
LINKS

<a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>

PROG

(PARI) exp(7) \\ Charles R Greathouse IV, Oct 02 2022

STATUS

approved

editing

#16 by Michael De Vlieger at Mon Jan 17 16:49:30 EST 2022
STATUS

reviewed

approved

#15 by Hugo Pfoertner at Mon Jan 17 14:41:36 EST 2022
STATUS

proposed

reviewed

#14 by Jon E. Schoenfield at Sun Jan 16 15:01:52 EST 2022
STATUS

editing

proposed

#13 by Jon E. Schoenfield at Sun Jan 16 15:01:37 EST 2022
FORMULA

From __Peter Bala_, Jan 12 2022: (Start)

EXAMPLE

1096.6331584284585992...

STATUS

proposed

editing

#12 by Peter Bala at Sun Jan 16 09:59:33 EST 2022
STATUS

editing

proposed

#11 by Peter Bala at Thu Jan 13 07:38:52 EST 2022
FORMULA

From Peter Bala, Jan 12 2022: (Start)

e^7 = (1/167)*Sum_{n >= 0} 7^(n+8)/((n+7)^2*(n+8)^2*n!) - 19440/167. - _Peter Bala_, Jan 12 2022

19440/e^7 = 7!*Sum_{n >= 0} (-7)^(n+5)*n^2/(n+7)! - 167. (End)

#10 by Peter Bala at Wed Jan 12 15:51:14 EST 2022
FORMULA

e^7 = 19440/167 - (1/167)*Sum_{n >= 0} 7^(n+8)/((n+7)^2*(n+8)^2*n!) - 19440/167. - Peter Bala, Jan 12 2022

#9 by Peter Bala at Wed Jan 12 15:45:42 EST 2022
FORMULA

e^7 = 19440/167 - (1/167)*Sum_{n >= 0} 7^(n+8)/((n+7)^2*(n+8)^2*n!). - Peter Bala, Jan 12 2022

STATUS

approved

editing