[go: up one dir, main page]

login
Revision History for A099118 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Conjectured number of times that S(k+n) = S(k), where S is the Kempner function A002034.
(history; published version)
#9 by Russ Cox at Fri Mar 30 17:22:34 EDT 2012
AUTHOR

_T. D. Noe (noe(AT)sspectra.com), _, Sep 28 2004

Discussion
Fri Mar 30
17:22
OEIS Server: https://oeis.org/edit/global/120
#8 by Charles R Greathouse IV at Sat Feb 25 17:11:51 EST 2012
STATUS

editing

approved

#7 by Charles R Greathouse IV at Sat Feb 25 17:11:48 EST 2012
MATHEMATICA

(*See A002034 for the Smarandache Kempner function*) nMax=22; iMax=10^6; iTab=Table[{}, {nMax}]; cTab=Table[0, {nMax}]; a=Table[SmarandacheKempner[i], {i, nMax+1}]; Do[If[a[[i]]==a[[i-n]], cTab[[n]]++; AppendTo[iTab[[n]], i]], {n, nMax}, {i, n+1, nMax+1}]; Do[a=RotateLeft[a]; a[[nMax+1]]=SmarandacheKempner[i]; Do[If[a[[nMax+1]]==a[[nMax-n+1]], cTab[[n]]++; AppendTo[iTab[[n]], i]], {n, nMax}], {i, nMax+2, iMax}]; cTab

STATUS

approved

editing

#6 by Charles R Greathouse IV at Tue Aug 23 02:38:17 EDT 2011
STATUS

editing

approved

#5 by Charles R Greathouse IV at Tue Aug 23 02:38:14 EDT 2011
NAME

Conjectured number of times that S(k+n) = S(k), where S is the Kempner-Smarandache function A002034.

STATUS

approved

editing

#4 by N. J. A. Sloane at Sun Jun 29 03:00:00 EDT 2008
LINKS

E. W. Eric Weisstein, 's World of Mathematics, <a href="http://mathworld.wolfram.com/SmarandacheFunction.html">The World of Mathematics: Smarandache Function</a>

KEYWORD

nonn,new

nonn

#3 by N. J. A. Sloane at Fri May 11 03:00:00 EDT 2007
NAME

Conjectured number of times that S(k+n) = S(k), where S is the Kempner-Smarandache function A002034.

KEYWORD

nonn,new

nonn

#2 by N. J. A. Sloane at Fri Feb 24 03:00:00 EST 2006
MATHEMATICA

(*See A002034 for the Smarandache function*) nMax=22; iMax=10^6; iTab=Table[{}, {nMax}]; cTab=Table[0, {nMax}]; a=Table[Smarandache[i], {i, nMax+1}]; Do[If[a[[i]]==a[[i-n]], cTab[[n]]++; AppendTo[iTab[[n]], i]], {n, nMax}, {i, n+1, nMax+1}]; Do[a=RotateLeft[a]; a[[nMax+1]]=Smarandache[i]; Do[If[a[[nMax+1]]==a[[nMax-n+1]], cTab[[n]]++; AppendTo[iTab[[n]], i]], {n, nMax}], {i, nMax+2, iMax}]; cTab

KEYWORD

nonn,new

nonn

#1 by N. J. A. Sloane at Sun Feb 20 03:00:00 EST 2005
NAME

Conjectured number of times that S(k+n) = S(k), where S is the Smarandache function A002034.

DATA

0, 1, 2, 2, 3, 0, 9, 3, 2, 5, 18, 2, 28, 9, 2, 1, 53, 2, 79, 5, 10, 23

OFFSET

1,3

COMMENTS

Numbers k up to 10^8 have been tested. Tutescu's conjecture is the case n=1.

REFERENCES

L. Tutescu, "On a Conjecture Concerning the Smarandache Function." Abstracts of Papers Presented to the Amer. Math. Soc. 17, 583, 1996.

LINKS

E. W. Weisstein, <a href="http://mathworld.wolfram.com/SmarandacheFunction.html">The World of Mathematics: Smarandache Function</a>

MATHEMATICA

(*See A002034 for the Smarandache function*) nMax=22; iMax=10^6; iTab=Table[{}, {nMax}]; cTab=Table[0, {nMax}]; a=Table[Smarandache[i], {i, nMax+1}]; Do[If[a[[i]]==a[[i-n]], cTab[[n]]++; AppendTo[iTab[[n]], i]], {n, nMax}, {i, n+1, nMax+1}]; Do[a=RotateLeft[a]; a[[nMax+1]]=Smarandache[i]; Do[If[a[[nMax+1]]==a[[nMax-n+1]], cTab[[n]]++; AppendTo[iTab[[n]], i]], {n, nMax}], {i, nMax+2, iMax}]; cTab

CROSSREFS

Cf. A099119 (greatest k such that S(k) = S(k-n)), A099120 (least m such that n = S(k) = S(k+m)).

KEYWORD

nonn

AUTHOR

T. D. Noe (noe(AT)sspectra.com), Sep 28 2004

STATUS

approved