editing
approved
editing
approved
a(n) = (1/2)*((123/2 - (55/2)*sqrt(5))^n + (123/2 + (55/2)*sqrt(5))^n) + (11/50)*sqrt(5)*((123/2 + (55/2)*sqrt(5))^n - (123/2 - (55/2)*sqrt(5))^n), with n >= 0. - Paolo P. Lava, Dec 12 2008
approved
editing
(MAGMAMagma) m:=20; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1-x)/(1-123*x+x^2) )); // G. C. Greubel, Jan 14 2019
proposed
approved
editing
proposed
H. C. Williams and R. K. Guy, <a href="http://www.emis.de/journals/INTEGERS/papers/a17self/a17self.Abstract.html ">Some Monoapparitic Fourth Order Linear Divisibility Sequences</a> Integers, Volume 12A (2012) The John Selfridge Memorial Volume.
proposed
editing
editing
proposed
a(n) = ((-1)^n)*S(2*n, 11*Ii) with the imaginary unit I i and the S(n, x) = U(n, x/2) Chebyshev polynomials.
a(n) = 123*a(n-1) - a(n-2) for n > 1, a(0)=1, a(1)=122. - Philippe Deléham, Nov 18 2008
a(n) = (1/2)*{[((123/2) - (55/2)*sqrt(5)])^n + [(123/2) + (55/2)*sqrt(5)])^n} ) + (11/50)*sqrt(5)*{[((123/2) + (55/2 )*sqrt(5)])^n - [(123/2) - (55/2)*sqrt(5)])^n}, ), with n >= 0. - Paolo P. Lava, Dec 12 2008
a(n) = (1/5)*F(10*n + 5). sum Sum_{n >= 1} 1/( a(n) - 1/a(n) ) = 1/11^2. Compare with A001519 and A007805. - Peter Bala, Nov 29 2013
approved
editing
reviewed
approved
proposed
reviewed