(MAGMAMagma) m:=20; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1+x)/(1-123*x+x^2) )); // G. C. Greubel, Jan 13 2019
(MAGMAMagma) m:=20; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1+x)/(1-123*x+x^2) )); // G. C. Greubel, Jan 13 2019
proposed
approved
editing
proposed
H. C. Williams and R. K. Guy, <a href="http://www.emis.de/journals/INTEGERS/papers/a17self/a17self.Abstract.html ">Some Monoapparitic Fourth Order Linear Divisibility Sequences</a> Integers, Volume 12A (2012) The John Selfridge Memorial Volume.
proposed
editing
editing
proposed
a(n) = (-2/11)*Ii*((-1)^n)*T(2*n+1, 11*Ii/2) with the imaginary unit I i and Chebyshev's polynomials of the first kind. See the T-triangle A053120.
a(n) = 123*a(n-1) - a(n-2) for n > 1, a(0)=1, a(1)=124 . - Philippe Deléham, Nov 18 2008
approved
editing
reviewed
approved
proposed
reviewed
editing
proposed
Giovanni Lucca, <a href="http://forumgeom.fau.edu/FG2019volume19/FG201902index.html">Integer Sequences and Circle Chains Inside a Hyperbola</a>, Forum Geometricorum (2019) Vol. 19, 11-16.
approved
editing