editing
approved
editing
approved
m = 4; 1 + Select[ Range[2000], Prime[ # + 2] - 2*Prime[ # + 1] + Prime[ # ] - 4*m == 0 &] (from * _Robert G. Wilson v _, Jul 14 2004 *)
approved
editing
_Roger L. Bagula_, Jul 02 2004
_Roger Bagula (rlbagulatftn(AT)yahoo.com), _, Jul 02 2004
Edited and extended by _Robert G. Wilson v (rgwv(AT)rgwv.com), _, Jul 14 2004
Edited by _N. J. A. Sloane (njas(AT)research.att.com), _, Nov 07 2005
nonn,new
nonn
Edited by N. J. A. Sloane (njas, (AT)research.att.com), Nov 07 2005
These come from music based on the prime differences where the chords are an even number of note steps from the primary note: a(n)=(Prime(n+1)-Prime[n])/2 a(n) +2*m=a(n+1) Prime Implicit is: Prime[n+2]-2*Prime[n+1]+Prime[n]-4*m==0
a(n)=(Prime(n+1)-Prime[n])/2 a(n) +2*m=a(n+1) m=4
nonn,uned,obsc,new
nonn
Roger L. Bagula (rlbagulatftn(AT)yahoo.com), Jul 02 2004
nonn,uned,obsc,new
Roger L. Bagula (tftnrlbagulatftn(AT)earthlinkyahoo.netcom), Jul 02 2004
Numbers that give the fourth prime chords.
99, 154, 189, 375, 462, 522, 548, 557, 573, 602, 641, 650, 721, 834, 836, 838, 937, 945, 1010, 1066, 1095, 1106, 1127, 1158, 1277, 1302, 1355, 1381, 1396, 1423, 1444, 1556, 1577, 1592, 1625, 1654, 1662, 1663, 1669, 1683, 1754, 1792, 1818, 1861, 1887, 1944
1,1
These come from music based on the prime differences where the chords are an even number of note steps from the primary note: a(n)=(Prime(n+1)-Prime[n])/2 a(n) +2*m=a(n+1) Prime Implicit is: Prime[n+2]-2*Prime[n+1]+Prime[n]-4*m==0
a(n)=(Prime(n+1)-Prime[n])/2 a(n) +2*m=a(n+1) m=4
m = 4; 1 + Select[ Range[2000], Prime[ # + 2] - 2*Prime[ # + 1] + Prime[ # ] - 4*m == 0 &] (from Robert G. Wilson v Jul 14 2004)
nonn,uned,obsc
Roger L. Bagula (tftn(AT)earthlink.net), Jul 02 2004
approved