[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Revision History for A082476 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
a(n) = Sum_{d|n} mu(d)^2*tau(d)^2.
(history; published version)
#18 by Vaclav Kotesovec at Tue Feb 28 02:05:47 EST 2023
STATUS

editing

approved

#17 by Vaclav Kotesovec at Tue Feb 28 02:05:10 EST 2023
FORMULA

From Vaclav Kotesovec, Feb 28 2023: (Start)

Dirichlet g.f.: Product_{primes p} (1 + 5/(p^s - 1)).

Dirichlet g.f.: zeta(s)^5 * Product_{primes p} (1 - 10/p^(2*s) + 20/p^(3*s) - 15/p^(4*s) + 4/p^(5*s)), (with a product that converges for s=1). (End)

#16 by Vaclav Kotesovec at Tue Feb 28 01:51:10 EST 2023
PROG

(PARI) for(n=1, 100, print1(direuler(p=2, n, (4*X+1)/(1-X))[n], ", ")) \\ Vaclav Kotesovec, Feb 28 2023

STATUS

approved

editing

#15 by N. J. A. Sloane at Wed Jul 26 09:57:35 EDT 2017
STATUS

proposed

approved

#14 by Michel Marcus at Wed Jul 26 09:47:48 EDT 2017
STATUS

editing

proposed

#13 by Michel Marcus at Wed Jul 26 09:47:42 EDT 2017
NAME

a(n) = sum(Sum_{d|n, } mu(d)^2*tau(d)^2).

FORMULA

a(n) = 5^omega(n); multiplicative with a(p^e)=5.

a(n) = abs(sum(d|n, mu(d)*tau_3(d^2))), where tau_3 is A007425. - From __Enrique Pérez Herrero_, Mar 29 2010

MATHEMATICA

Contribution from Enrique Pérez Herrero, Mar 29 2010: (Start)

A082476[n_] := Abs[DivisorSum[n, MoebiusMu[ # ]*tau[3, #^2] &]]; (* _Enrique Pérez Herrero_, Mar 29 2010 *)

A082476[n_] := 5^PrimeNu[n] (End* _Enrique Pérez Herrero_, Mar 29 2010 *)

STATUS

proposed

editing

#12 by Antti Karttunen at Wed Jul 26 09:27:21 EDT 2017
STATUS

editing

proposed

#11 by Antti Karttunen at Wed Jul 26 09:26:57 EDT 2017
NAME

a(n) = sum(d|n, mu(d)^2*tau(d)^2).

COMMENTS

More generally : sum(d|n, mu(d)^2*tau(d)^m) = (2^m+1)^omega(n).

LINKS

Antti Karttunen, <a href="/A082476/b082476.txt">Table of n, a(n) for n = 1..10000</a>

#10 by Antti Karttunen at Wed Jul 26 09:25:49 EDT 2017
LINKS

<a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>

FORMULA

a(n) = 5^omega(n); multiplicative with a(p^e)=5

a(n) = abs(sum(d|n, mu(d)*tau_3(d^2))), where tau_3 is A007425 [. - From Enrique Pérez Herrero, Mar 29 2010]

a(n) = tau_5(rad(n)) = A061200(A007947(n)) [From _. - _Enrique Pérez Herrero_, Jun 24 2010]

a(n) = A000351(A001221(n)). - Antti Karttunen, Jul 26 2017

STATUS

approved

editing

#9 by Russ Cox at Sat Mar 31 14:12:31 EDT 2012
FORMULA

a(n)=abs(sum(d|n, mu(d)*tau_3(d^2))), where tau_3 is A007425 [From _Enrique Perez Pérez Herrero (psychgeometry(AT)gmail.com), _, Mar 29 2010]

a(n)=tau_5(rad(n))=A061200(A007947(n)) [From _Enrique Perez Pérez Herrero (psychgeometry(AT)gmail.com), _, Jun 24 2010]

MATHEMATICA

Contribution from _Enrique Perez Pérez Herrero (psychgeometry(AT)gmail.com), _, Mar 29 2010: (Start)

Discussion
Sat Mar 31
14:12
OEIS Server: https://oeis.org/edit/global/933