editing
approved
Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
editing
approved
From Vaclav Kotesovec, Feb 28 2023: (Start)
Dirichlet g.f.: Product_{primes p} (1 + 5/(p^s - 1)).
Dirichlet g.f.: zeta(s)^5 * Product_{primes p} (1 - 10/p^(2*s) + 20/p^(3*s) - 15/p^(4*s) + 4/p^(5*s)), (with a product that converges for s=1). (End)
(PARI) for(n=1, 100, print1(direuler(p=2, n, (4*X+1)/(1-X))[n], ", ")) \\ Vaclav Kotesovec, Feb 28 2023
approved
editing
proposed
approved
editing
proposed
a(n) = sum(Sum_{d|n, } mu(d)^2*tau(d)^2).
a(n) = 5^omega(n); multiplicative with a(p^e)=5.
a(n) = abs(sum(d|n, mu(d)*tau_3(d^2))), where tau_3 is A007425. - From __Enrique Pérez Herrero_, Mar 29 2010
Contribution from Enrique Pérez Herrero, Mar 29 2010: (Start)
A082476[n_] := Abs[DivisorSum[n, MoebiusMu[ # ]*tau[3, #^2] &]]; (* _Enrique Pérez Herrero_, Mar 29 2010 *)
A082476[n_] := 5^PrimeNu[n] (End* _Enrique Pérez Herrero_, Mar 29 2010 *)
proposed
editing
editing
proposed
a(n) = sum(d|n, mu(d)^2*tau(d)^2).
More generally : sum(d|n, mu(d)^2*tau(d)^m) = (2^m+1)^omega(n).
Antti Karttunen, <a href="/A082476/b082476.txt">Table of n, a(n) for n = 1..10000</a>
<a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>
a(n) = 5^omega(n); multiplicative with a(p^e)=5
a(n) = abs(sum(d|n, mu(d)*tau_3(d^2))), where tau_3 is A007425 [. - From Enrique Pérez Herrero, Mar 29 2010]
a(n) = tau_5(rad(n)) = A061200(A007947(n)) [From _. - _Enrique Pérez Herrero_, Jun 24 2010]
a(n) = A000351(A001221(n)). - Antti Karttunen, Jul 26 2017
approved
editing
Contribution from _Enrique Perez Pérez Herrero (psychgeometry(AT)gmail.com), _, Mar 29 2010: (Start)