G. Nebe, E. M. Rains and N. J. A. Sloane, <a href="http://www.research.attneilsloane.com/~njas/doc/cliff2.html
Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
G. Nebe, E. M. Rains and N. J. A. Sloane, <a href="http://www.research.attneilsloane.com/~njas/doc/cliff2.html
_N. J. A. Sloane (njas(AT)research.att.com), _, Feb 10 2004
nonn,new
nonn
N. J. A. Sloane (njas, (AT)research.att.com), Feb 10 2004
G. Nebe, E. M. Rains and N. J. A. Sloane, <a href="http://www.research.att.com/~njas/doc/cliff2.html"> Self-Dual Codes and Invariant Theory</a>, Springer, Berlin, 2006.
nonn,new
nonn
Nebe-Rains-Sloane, book in progress, Chapter 6.
G. Nebe, E. M. Rains and N. J. A. Sloane, <a href="http://www.research.att.com/~njas/doc/cliff2.html"> Self-Dual Codes and Invariant Theory</a>, Springer, Berlin, 2006.
nonn,new
nonn
5^(n^2+2n+1)*Product_{j=1..n} (25^j-1).
5, 15000, 29250000000, 35703281250000000000, 27239372138671875000000000000000, 12988743471794208526611328125000000000000000000, 3870947187719439049405530095100402832031250000000000000000000000, 721020100095350865678782984846420731628313660621643066406250000000000000000000000000
0,1
The order of the p-Clifford group for an odd prime p is a*p^(n^2+2n+1)*Product_{j=1..n} (p^(2*j)-1), where a = gcd(p+1,4).
Nebe-Rains-Sloane, book in progress, Chap 6,
nonn,new
njas, Feb 10 2004
approved