editing
approved
Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
editing
approved
1, 1, 1, 1, 0, 1, -1, 1, -1, 0, 1, 1, -1, 1, -2, -1, 3, 5, -1, -2, 7, -3, -13, 97, 200, 2309, -226573, 45538573, -105193879657, -23833987746960404, 1085365814730154781188953, 114173840897460294190477827374165629, 272121792497347519357684708535661864450
RecurrenceTable[{a[1]==a[2]==a[3]==a[4]==1, a[n]==a[n-4]a[n-2]- a[n-3] a[n-1]}, a, {n, 40}] (* Harvey P. Dale, Aug 24 2019 *)
Corrected by Harvey P. Dale, Aug 24 2019
approved
editing
Ray Chandler, following a suggestion of _Rainer Rosenthal (r.rosenthal(AT)web.de), _, Nov 18 2003
Sequence b(n,p) = a(n) (mod p), p prime, n>4, is a periodic sequence. Letting l(p) denotes the length of the period of b(n,p) is there any rule for l(p) ? - _Benoit Cloitre (benoit7848c(AT)orange.fr), _, Nov 19 2003
a(n) is asymptotic (in absolute value) to B^(r^n) where r is the real root of 1+x^2-x^3 and B>1. - _Benoit Cloitre (benoit7848c(AT)orange.fr), _, Nov 19 2003
_Ray Chandler (rayjchandler(AT)sbcglobal.net), _, following a suggestion of Rainer Rosenthal (r.rosenthal(AT)web.de), Nov 18 2003
Sequence b(n,p) = a(n) (mod p), p prime, n>4, is a periodic sequence. Letting l(p) denotes the length of the period of b(n,p) is there any rule for l(p) ? - Benoit Cloitre (abmtbenoit7848c(AT)wanadooorange.fr), Nov 19 2003
a(n) is asymptotic (in absolute value) to B^(r^n) where r is the real root of 1+x^2-x^3 and B>1. - Benoit Cloitre (abmtbenoit7848c(AT)wanadooorange.fr), Nov 19 2003
sign,easy,new
sign,easy,new
Ray Chandler (RayChandlerrayjchandler(AT)alumni.tcusbcglobal.edunet), following a suggestion of Rainer Rosenthal (r.rosenthal(AT)web.de), Nov 18 2003
Sequence b(n,p) = a(n) (mod p), p prime, n>4, is a periodic sequence. Letting l(p) denotes the length of the period of b(n,p) is there any rule for l(p) ? - Benoit Cloitre (abcloitreabmt(AT)modulonetwanadoo.fr), Nov 19 2003
a(n) is asymptotic (in absolute value) to B^(r^n) where r is the real root of 1+x^2-x^3 and B>1. - Benoit Cloitre (abcloitreabmt(AT)modulonetwanadoo.fr), Nov 19 2003
sign,easy,new
Sequence b(n,p) = a(n) (mod p), p prime, n>4, is a periodic sequence. Letting l(p) denotes the length of the period of b(n,p) is there any rule for l(p) ? - Benoit Cloitre (abcloitre(AT)wanadoomodulonet.fr), Nov 19 2003
a(n) is asymptotic (in absolute value) to B^(r^n) where r is the real root of 1+x^2-x^3 and B>1. - Benoit Cloitre (abcloitre(AT)wanadoomodulonet.fr), Nov 19 2003
sign,easy,new
1, 1, 1, 1, ... a, b, c, d, ac-bd, ...
1, 1, 1, 1, 0, 1, -1, 1, -1, 0, 1, 1, -1, 1, -2, -1, 3, 5, -1, -2, 7, -3, -13, 97, 200, 2309, -226573, 45538573, -105193879657, -23833987746960404, 1085365814730154781188953, 114173840897460294190477827374165629, 272121792497347519357684708535661864450
1,15
Inspired by the formula for the determinant of a 2 X 2 matrix.
Sequence b(n,p) = a(n) (mod p), p prime, n>4, is a periodic sequence. Letting l(p) denotes the length of the period of b(n,p) is there any rule for l(p) ? - Benoit Cloitre (abcloitre(AT)wanadoo.fr), Nov 19 2003
a(1)=a(2)=a(3)=a(4)=1, for n>4 a(n)=a(n-4)*a(n-2)-a(n-3)*a(n-1).
a(n) is asymptotic (in absolute value) to B^(r^n) where r is the real root of 1+x^2-x^3 and B>1. - Benoit Cloitre (abcloitre(AT)wanadoo.fr), Nov 19 2003
(PARI) a=b=c=d=1; for(n=5, 30, e=b*d-a*c; a=b; b=c; c=d; d=e; print1(e, ", "))
Cf. A089983.
sign,easy
Ray Chandler (RayChandler(AT)alumni.tcu.edu), following a suggestion of Rainer Rosenthal (r.rosenthal(AT)web.de), Nov 18 2003
approved