_Reinhard Zumkeller (reinhard.zumkeller(AT)gmail.com), _, Jul 29 2003
Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
_Reinhard Zumkeller (reinhard.zumkeller(AT)gmail.com), _, Jul 29 2003
<a href="/Sindx_index/1.html#1overn">Index entries for sequences related to decimal expansion of 1/n.</a>
<a href="/Sindx_1.html#1overn">Index entries for sequences related to decimal expansion of 1/n.</a>
nonn,base,new
<a href="http://www.research.att.com/~njas/sequences/Sindx_1.html#1overn">Index entries for sequences related to decimal expansion of 1/n.</a>
nonn,base,new
nonn,base,new
Reinhard Zumkeller (reinhard.zumkeller(AT)lhsystemsgmail.com), Jul 29 2003
<a href="http://www.research.att.com/~njas/sequences/Sindx_1.html#1overn">Index entries for sequences related to decimal expansion of 1/n.</a>
<a href="http://www.research.att.com/~njas/sequences/Sindx_1.html#1overn">Index entries for sequences related to decimal expansion of 1/n.</a>
nonn,base,new
Left half of periodic part of decimal expansion of 1/p for those primes having a periodic part of even length.
142, 9, 769, 58823529, 526315789, 43478260869, 34482758620689, 21276595744680851063829, 16949152542372881355932203389, 163934426229508196721311475409, 1369, 1123595505617977528089
1,1
H. Rademacher and O. Toeplitz, Von Zahlen und Figuren (Springer 1930, reprinted 1968), ch. 19, Die periodischen Dezimalbrueche.
<a href="http://www.research.att.com/~njas/sequences/Sindx_1.html#1overn">Index entries for sequences related to decimal expansion of 1/n.</a>
Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MidysTheorem.html">Midy's Theorem</a>
nonn,base
Reinhard Zumkeller (reinhard.zumkeller(AT)lhsystems.com), Jul 29 2003
approved