[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Revision History for A084348 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Triangle in which row n gives periodic part of a certain map.
(history; published version)
#5 by Russ Cox at Fri Mar 30 18:39:18 EDT 2012
AUTHOR

_Benoit Cloitre (benoit7848c(AT)orange.fr), _, Jun 22 2003

Discussion
Fri Mar 30
18:39
OEIS Server: https://oeis.org/edit/global/216
#4 by N. J. A. Sloane at Sun Jun 29 03:00:00 EDT 2008
KEYWORD

nonn,tabl,new

AUTHOR

Benoit Cloitre (abmtbenoit7848c(AT)wanadooorange.fr), Jun 22 2003

#3 by N. J. A. Sloane at Wed Sep 21 03:00:00 EDT 2005
KEYWORD

nonn,tabl,new

AUTHOR

Benoit Cloitre (abcloitreabmt(AT)modulonetwanadoo.fr), Jun 22 2003

#2 by N. J. A. Sloane at Tue Jul 19 03:00:00 EDT 2005
KEYWORD

nonn,tabl,new

AUTHOR

Benoit Cloitre (abcloitre(AT)wanadoomodulonet.fr), Jun 22 2003

#1 by N. J. A. Sloane at Sat Sep 13 03:00:00 EDT 2003
NAME

Triangle in which row n gives periodic part of a certain map.

DATA

0, 0, 1, 2, 2, 1, 2, 1, 0, 1, 2, 0, 1, 0, 1, 2, 5, 4, 5, 2, 1, 2, 5, 2, 2, 4, 4, 1, 2, 5, 0, 1, 6, 5, 4, 1, 2, 5, 7, 2, 2, 4, 2, 8, 1, 2, 5, 6, 5, 6, 7, 0, 1, 0, 1, 2, 5, 5, 10, 7, 10, 5, 8, 7, 5, 1, 2, 5, 4, 5, 2, 1, 8, 5, 10, 5, 8, 1, 2, 5, 3, 0, 1, 7, 11, 11, 9, 0, 1, 0, 1, 2, 5, 2, 9, 4, 11, 8, 9, 12, 9, 2

OFFSET

1,4

COMMENTS

Let r(k,n)=floor(e*k!)-n*floor(e*k!/n) then for any n integer>0, sequence r(k,n) is n-periodic. Sequence gives periods of r(k,n) for fixed n.

EXAMPLE

If n=7, r(k,7) is sequence 2, 5, 2, 2, 4, 4, 1, 2, 5, 2, 2, 4, 4, 1, 2, 5, 2, 2, 4, 4, 1, 2, 5, 2, 2, 4, 4, 1, 2, 5...... 7-periodic with period: (2, 5, 2, 2, 4, 4, 1,)

CROSSREFS

Cf. A084351.

KEYWORD

nonn,tabl

AUTHOR

Benoit Cloitre (abcloitre(AT)wanadoo.fr), Jun 22 2003

STATUS

approved