_Benoit Cloitre (benoit7848c(AT)orange.fr), _, Jun 22 2003
Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
_Benoit Cloitre (benoit7848c(AT)orange.fr), _, Jun 22 2003
nonn,tabl,new
Benoit Cloitre (abmtbenoit7848c(AT)wanadooorange.fr), Jun 22 2003
nonn,tabl,new
Benoit Cloitre (abcloitreabmt(AT)modulonetwanadoo.fr), Jun 22 2003
nonn,tabl,new
Benoit Cloitre (abcloitre(AT)wanadoomodulonet.fr), Jun 22 2003
Triangle in which row n gives periodic part of a certain map.
0, 0, 1, 2, 2, 1, 2, 1, 0, 1, 2, 0, 1, 0, 1, 2, 5, 4, 5, 2, 1, 2, 5, 2, 2, 4, 4, 1, 2, 5, 0, 1, 6, 5, 4, 1, 2, 5, 7, 2, 2, 4, 2, 8, 1, 2, 5, 6, 5, 6, 7, 0, 1, 0, 1, 2, 5, 5, 10, 7, 10, 5, 8, 7, 5, 1, 2, 5, 4, 5, 2, 1, 8, 5, 10, 5, 8, 1, 2, 5, 3, 0, 1, 7, 11, 11, 9, 0, 1, 0, 1, 2, 5, 2, 9, 4, 11, 8, 9, 12, 9, 2
1,4
Let r(k,n)=floor(e*k!)-n*floor(e*k!/n) then for any n integer>0, sequence r(k,n) is n-periodic. Sequence gives periods of r(k,n) for fixed n.
If n=7, r(k,7) is sequence 2, 5, 2, 2, 4, 4, 1, 2, 5, 2, 2, 4, 4, 1, 2, 5, 2, 2, 4, 4, 1, 2, 5, 2, 2, 4, 4, 1, 2, 5...... 7-periodic with period: (2, 5, 2, 2, 4, 4, 1,)
Cf. A084351.
nonn,tabl
Benoit Cloitre (abcloitre(AT)wanadoo.fr), Jun 22 2003
approved