[go: up one dir, main page]

login
Revision History for A078130 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Numbers having exactly one representation as sum of cubes>1.
(history; published version)
#7 by Russ Cox at Fri Mar 30 18:50:29 EDT 2012
AUTHOR

_Reinhard Zumkeller (reinhard.zumkeller(AT)gmail.com), _, Nov 19 2002

Discussion
Fri Mar 30
18:50
OEIS Server: https://oeis.org/edit/global/246
#6 by Russ Cox at Sun Jul 10 18:22:01 EDT 2011
LINKS

<a href="/Sindx_index/Su.html#ssq">Index entries for sequences related to sums of cubes</a>

Discussion
Sun Jul 10
18:22
OEIS Server: https://oeis.org/edit/global/87
#5 by N. J. A. Sloane at Thu Nov 11 07:34:06 EST 2010
LINKS

<a href="/Sindx_Su.html#ssq">Index entries for sequences related to sums of cubes</a>

KEYWORD

nonn,new

nonn

#4 by N. J. A. Sloane at Fri Feb 27 03:00:00 EST 2009
LINKS

<a href="http://www.research.att.com/~njas/sequences/Sindx_Su.html#ssq">Index entries for sequences related to sums of cubes</a>

KEYWORD

nonn,new

nonn

#3 by N. J. A. Sloane at Fri Jan 09 03:00:00 EST 2009
KEYWORD

nonn,new

nonn

AUTHOR

Reinhard Zumkeller (reinhard.zumkeller(AT)lhsystemsgmail.com), Nov 19 2002

#2 by N. J. A. Sloane at Sun Jun 29 03:00:00 EDT 2008
LINKS

E. W. Eric Weisstein, 's World of Mathematics, <a href="http://mathworld.wolfram.com/CubicNumber.html">Cubic Number</a>.

KEYWORD

nonn,new

nonn

#1 by N. J. A. Sloane at Fri May 16 03:00:00 EDT 2003
NAME

Numbers having exactly one representation as sum of cubes>1.

DATA

8, 16, 24, 27, 32, 35, 40, 43, 48, 51, 54, 56, 59, 62, 67, 70, 75, 78, 81, 83, 86, 89, 94, 97, 102, 105, 108, 110, 113, 116, 121, 124, 125, 129, 132, 133, 135, 137, 140, 141, 143, 148, 149, 151, 156, 157, 159, 162, 164, 165, 167, 170, 173, 175, 178, 181, 183

OFFSET

1,1

COMMENTS

A078128(a(n))=1.

Conjecture: the sequence is finite; is a(63)=218 the last entry?

LINKS

<a href="http://www.research.att.com/~njas/sequences/Sindx_Su.html#ssq">Index entries for sequences related to sums of cubes</a>

E. W. Weisstein, <a href="http://mathworld.wolfram.com/CubicNumber.html">Cubic Number</a>.

EXAMPLE

72 is not a term, as 72 = 8+8+8+8+8+8+8+8+8 = 8+64.

CROSSREFS
KEYWORD

nonn

AUTHOR

Reinhard Zumkeller (reinhard.zumkeller(AT)lhsystems.com), Nov 19 2002

STATUS

approved