_Reinhard Zumkeller (reinhard.zumkeller(AT)gmail.com), _, Nov 19 2002
_Reinhard Zumkeller (reinhard.zumkeller(AT)gmail.com), _, Nov 19 2002
<a href="/Sindx_index/Su.html#ssq">Index entries for sequences related to sums of cubes</a>
<a href="/Sindx_Su.html#ssq">Index entries for sequences related to sums of cubes</a>
nonn,new
nonn
<a href="http://www.research.att.com/~njas/sequences/Sindx_Su.html#ssq">Index entries for sequences related to sums of cubes</a>
nonn,new
nonn
nonn,new
nonn
Reinhard Zumkeller (reinhard.zumkeller(AT)lhsystemsgmail.com), Nov 19 2002
E. W. Eric Weisstein, 's World of Mathematics, <a href="http://mathworld.wolfram.com/CubicNumber.html">Cubic Number</a>.
nonn,new
nonn
Numbers having exactly one representation as sum of cubes>1.
8, 16, 24, 27, 32, 35, 40, 43, 48, 51, 54, 56, 59, 62, 67, 70, 75, 78, 81, 83, 86, 89, 94, 97, 102, 105, 108, 110, 113, 116, 121, 124, 125, 129, 132, 133, 135, 137, 140, 141, 143, 148, 149, 151, 156, 157, 159, 162, 164, 165, 167, 170, 173, 175, 178, 181, 183
1,1
A078128(a(n))=1.
Conjecture: the sequence is finite; is a(63)=218 the last entry?
<a href="http://www.research.att.com/~njas/sequences/Sindx_Su.html#ssq">Index entries for sequences related to sums of cubes</a>
E. W. Weisstein, <a href="http://mathworld.wolfram.com/CubicNumber.html">Cubic Number</a>.
72 is not a term, as 72 = 8+8+8+8+8+8+8+8+8 = 8+64.
nonn
Reinhard Zumkeller (reinhard.zumkeller(AT)lhsystems.com), Nov 19 2002
approved