reviewed
approved
Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
reviewed
approved
proposed
reviewed
editing
proposed
Stefano Spezia, <a href="/A064304/b064304.txt">Table of n, a(n) for n = 0..10000</a>
proposed
editing
editing
proposed
<a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (7,-21,35,-35,21,-7,1).
E.g.f.: exp(x)*(1 + 428*x + 6866*x^2 + 15768*x^3 + 9990*x^4 + 2112*x^5 + 132*x^6). - Stefano Spezia, Jul 24 2022
a(n) = 1 + 6*n + 20*n^2 + 48*n^3 + 90*n^4 + 132*n^5 + 132*n^6. Seventh , compare to row polynomial (n = 6) of Catalan triangle A009766.
G.f.: (1 + 422*x + 11607*x^2 + 43940*x^3 + 34063*x^4 + 4950*x^5 + 57*x^6)/(1 - x)^7.
approved
editing
_Wolfdieter Lang (wolfdieter.lang(AT)physik.uni-karlsruhe.de), _, Sep 13 2001
Eighth diagonal of triangle A064094.
1, 429, 14589, 137089, 702297, 2537781, 7312789, 17981769, 39322929, 78571837, 146150061, 256488849, 428947849, 688828869, 1068484677, 1608522841, 2359104609, 3381338829, 4748770909, 6548966817
0,2
a(n)= 1+6*n+20*n^2+48*n^3+90*n^4+132*n^5+132*n^6. Seventh row polynomial (n=6) of Catalan triangle A009766.
G.f.:(1+422*x+11607*x^2+43940*x^3+34063*x^4+4950*x^5+57*x^6)/(1-x)^7.
A064304 (eighth diagonal).
nonn,easy
Wolfdieter Lang (wolfdieter.lang(AT)physik.uni-karlsruhe.de), Sep 13 2001
approved