proposed
approved
proposed
approved
editing
proposed
(Python)
def A052955(n): return ((2|n&1)<<(n>>1))-1 # Chai Wah Wu, Jul 13 2023
approved
editing
proposed
approved
editing
proposed
David Blackman and Sebastiano Vigna, <a href="https://dl.acm.org/doi/10.1145/3460772">Scrambled Linear Pseudorandom Number Generators</a>, ACM Transactions on Mathematical Software, Vol. 47, No. 4, p. 1-32, 2021; <a href="https://arxiv.org/abs/1805.01407">arXiv
Updated reference to Blackman & Vigna to journal paper.
proposed
editing
editing
proposed
David Blackman and Sebastiano Vigna, <a href="https://arxivdl.acm.org/absdoi/180510.014071145/3460772arXiv:1805ACM Transactions on Mathematical Software, Vol. 47, No.01407 [cs 4, p.DS], 2018 1-32, 2021.
Updated reference to Blackman & Vigna to journal paper.
approved
editing
(MAGMAMagma) [((5-(-1)^n)/2)*2^((2*n-1+(-1)^n)/4)-1: n in [0..45]]; // G. C. Greubel, Oct 22 2019
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A029744 = {s(n), n>=1}, the numbers 2^k and 3*2^k, as the parent: A029744 (s(n)); A052955 (s(n)-1), A027383 (s(n)-2), A354788 (s(n)-3), A347789 (s(n)-4), A209721 (s(n)+1), A209722 (s(n)+2), A343177 (s(n)+3), A209723 (s(n)+4); A060482, A136252 (minor differences from A354788 at the start); A354785 (3*s(n)), A354789 (3*s(n)-7). The first differences of A029744 are 1,1,1,2,2,4,4,8,8,... which essentially matches eight sequences: A016116, A060546, A117575, A131572, A152166, A158780, A163403, A320770. The bisections of A029744 are A000079 and A000244A007283. - N. J. A. Sloane, Jul 14 2022