[go: up one dir, main page]

login
Revision History for A058661 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
McKay-Thompson series of class 39C for Monster.
(history; published version)
#25 by Vaclav Kotesovec at Tue Jun 26 08:42:48 EDT 2018
STATUS

editing

approved

#24 by Vaclav Kotesovec at Tue Jun 26 08:24:04 EDT 2018
FORMULA

a(n) ~ exp(4*Pi*sqrt(n/39)) / (sqrt(2) * 39^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jun 26 2018

STATUS

approved

editing

#23 by Susanna Cuyler at Tue Jun 19 12:33:00 EDT 2018
STATUS

reviewed

approved

#22 by Michel Marcus at Tue Jun 19 09:33:43 EDT 2018
STATUS

proposed

reviewed

#21 by G. C. Greubel at Tue Jun 19 03:19:43 EDT 2018
STATUS

editing

proposed

#20 by G. C. Greubel at Tue Jun 19 03:18:29 EDT 2018
MATHEMATICA

eta[q_] := q^(1/24)*QPochhammer[q]; a:= CoefficientList[Series[q*((eta[q^3]*eta[q^13])/(eta[q]*eta[q^39]) - 1), {q, 0, n60}], q]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jun 19 2018*)

PROG

(PARI) q='q+O('q^50); Vec((eta(q^3)*eta(q^13))/(q*eta(q)*eta(q^39)) - 1) \\ G. C. Greubel, Jun 19 2018

#19 by G. C. Greubel at Tue Jun 19 01:43:18 EDT 2018
LINKS

G. C. Greubel, <a href="/A058661/b058661.txt">Table of n, a(n) for n = -1..1000</a>

FORMULA

Expansion of -1 + (eta(q^3)*eta(q^13))/(eta(q)*eta(q^39)) in powers of q. - G. C. Greubel, Jun 19 2018

MATHEMATICA

eta[q_] := q^(1/24)*QPochhammer[q]; a:= CoefficientList[Series[q*(eta[q^3]*eta[q^13])/(eta[q]*eta[q^39]) - 1), {q, 0, n}]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jun 19 2018*)

PROG

(PARI) q='q+O('q^50); Vec((eta(q^3)*eta(q^13))/(q*eta(q)*eta(q^39))) \\ G. C. Greubel, Jun 19 2018

STATUS

approved

editing

#18 by Bruno Berselli at Wed Feb 19 03:40:13 EST 2014
STATUS

reviewed

approved

#17 by Joerg Arndt at Wed Feb 19 02:29:32 EST 2014
STATUS

proposed

reviewed

#16 by Michel Marcus at Wed Feb 19 02:23:31 EST 2014
STATUS

editing

proposed