reviewed
approved
reviewed
approved
proposed
reviewed
editing
proposed
(Python)
from sympy import mobius, divisors
def A056463(n): return sum(mobius(n//d)*((1<<(d+1>>1))-2) for d in divisors(n, generator=True)) # Chai Wah Wu, Feb 18 2024
approved
editing
proposed
approved
editing
proposed
G.f.: Sum_{k>=1} mu(k)*2*x^(3*k)/((1 - 2*x^(2*k))*(1 - x^k)). - Andrew Howroyd, Sep 29 2019
(PARI) seq(n)={Vec(sum(k=1, n\3, moebius(k)*2*x^(3*k)/((1 - 2*x^(2*k))*(1 - x^k)) + O(x*x^n)), -n)} \\ Andrew Howroyd, Sep 29 2019
0, 0, 2, 2, 6, 4, 14, 12, 28, 24, 62, 54, 126, 112, 246, 240, 510, 476, 1022, 990, 2030, 1984, 4094, 4020, 8184, 8064, 16352, 16254, 32766, 32484, 65534, 65280, 131006, 130560, 262122, 261576, 524286, 523264, 1048446, 1047540, 2097150, 2094988, 4194302, 4192254
Andrew Howroyd, <a href="/A056463/b056463.txt">Table of n, a(n) for n = 1..1000</a>
a(n) = Sum _{d|n} mu(d)*A056453(n/d) where d divides n.
Terms a(32) and beyond from Andrew Howroyd, Sep 28 2019
approved
editing
Marks R. Nester (nesterm(AT)dpi.qld.gov.au)
M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]