[go: up one dir, main page]

login
Revision History for A055583 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Seventh column of triangle A055252.
(history; published version)
#11 by Harvey P. Dale at Sun Nov 06 19:03:40 EST 2022
STATUS

editing

approved

#10 by Harvey P. Dale at Sun Nov 06 19:03:37 EST 2022
LINKS

<a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (10,-42,96,-129,102,-44,8).

MATHEMATICA

LinearRecurrence[{10, -42, 96, -129, 102, -44, 8}, {1, 10, 58, 256, 955, 3178, 9740}, 30] (* Harvey P. Dale, Nov 06 2022 *)

STATUS

approved

editing

#9 by Alois P. Heinz at Fri Apr 24 17:40:08 EDT 2020
STATUS

proposed

approved

#8 by Michel Marcus at Fri Apr 24 16:50:07 EDT 2020
STATUS

editing

proposed

#7 by Michel Marcus at Fri Apr 24 16:50:00 EDT 2020
FORMULA

G.f. : 1/(((1-2*x)^3)*(1-x)^4).

a(n) = A055252(n+6, 6).

a(n)= A055252(n+6, 6). a(n) = sum(a(j), Sum_{j=0..n-1} a(j) + A055250(n), n >= 1.

STATUS

proposed

editing

#6 by Michael De Vlieger at Fri Apr 24 16:10:13 EDT 2020
STATUS

editing

proposed

#5 by Michael De Vlieger at Fri Apr 24 16:10:09 EDT 2020
LINKS

Michael De Vlieger, <a href="/A055583/b055583.txt">Table of n, a(n) for n = 0..3295</a>

Robert Davis, Greg Simay, <a href="https://arxiv.org/abs/2001.11089">Further Combinatorics and Applications of Two-Toned Tilings</a>, arXiv:2001.11089 [math.CO], 2020.

MATHEMATICA

CoefficientList[Series[1/(((1 - 2 x)^3) (1 - x)^4), {x, 0, 24}], x] (* Michael De Vlieger, Apr 24 2020 *)

STATUS

approved

editing

#4 by Russ Cox at Sat Mar 31 13:20:01 EDT 2012
AUTHOR

_Wolfdieter Lang (wolfdieter.lang(AT)physik.uni-karlsruhe.de), _, May 26 2000

Discussion
Sat Mar 31
13:20
OEIS Server: https://oeis.org/edit/global/878
#3 by N. J. A. Sloane at Fri Feb 24 03:00:00 EST 2006
FORMULA

a(n)= A055252(n+6, 6). a(n)= sum(a(j), j=0..n-1)+A055250(n), n >= 1.

KEYWORD

easy,nonn,new

#2 by N. J. A. Sloane at Fri May 16 03:00:00 EDT 2003
FORMULA

a(n)= A055252(n+6,6). a(n)= sum(a(j),j=0..n-1)+A055250(n), n >= 1.

KEYWORD

easy,nonn,new

AUTHOR

Wolfdieter Lang (wolfdieter.lang@(AT)physik.uni-karlsruhe.de), May 26 2000