[go: up one dir, main page]

login
Revision History for A054937 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Number of chiral planar maps on n nodes up to orientation-preserving isomorphisms.
(history; published version)
#12 by N. J. A. Sloane at Sun Mar 04 10:22:18 EST 2018
STATUS

proposed

approved

#11 by R. J. Mathar at Sun Mar 04 10:21:35 EST 2018
STATUS

editing

proposed

#10 by R. J. Mathar at Sun Mar 04 10:21:15 EST 2018
DATA

0, 0, 0, 5, 64, 655, 5858, 51369, 448982, 3967466, 35603366, 324990677, 3016738988, 28449849867, 272233685444, 2639649712580, 25902435997188

KEYWORD

nonn,easy,more

STATUS

approved

editing

#9 by Russ Cox at Fri Mar 30 16:48:49 EDT 2012
AUTHOR

_N. J. A. Sloane (njas(AT)research.att.com), _, May 24 2000

Discussion
Fri Mar 30
16:48
OEIS Server: https://oeis.org/edit/global/110
#8 by R. J. Mathar at Sat Oct 01 12:50:24 EDT 2011
STATUS

editing

approved

#7 by R. J. Mathar at Sat Oct 01 12:48:09 EDT 2011
LINKS

V. A. Liskovets, <a href="http://www.cs.uwaterloo.ca/journals/JIS/indexVOL3/LISK/Derseq.html">Some easily derivable sequences</a>, J. Integer Sequences, 3 (2000), #00.2.2.

FORMULA

a(n) = A006385(n)-A054936(n). - R. J. Mathar, Oct 01 2011

STATUS

approved

editing

#6 by N. J. A. Sloane at Fri Feb 27 03:00:00 EST 2009
KEYWORD

nonn,easy,more,new

AUTHOR

N. J. A. Sloane (njas, (AT)research.att.com), May 24 2000

#5 by N. J. A. Sloane at Sat Apr 09 03:00:00 EDT 2005
LINKS

V. A. Liskovets, <a href="http://www.cs.uwaterloo.ca/journals/JIS/index.html">Some easily derivable sequences</a>, J. Integer Sequences, 3 (2000), #00.2.2.

KEYWORD

nonn,easy,more,new

#4 by N. J. A. Sloane at Sun Feb 20 03:00:00 EST 2005
LINKS

V. A. Liskovets, <a href="http://www.mathcs.uwaterloo.ca/JIS/index.html">Some easily derivable sequences</a>, J. Integer Sequences, 3 (2000), #00.2.2.

KEYWORD

nonn,easy,more,new

#3 by N. J. A. Sloane at Sat Jun 12 03:00:00 EDT 2004
NAME

Chiral Number of chiral planar maps on n nodes up to orientation-preserving isomorphisms.

KEYWORD

nonn,easy,more,new