(MAGMAMagma) I:=[1, 8, 129, 1040]; [n le 4 select I[n] else 130*Self(n-2)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Dec 11 2013
(MAGMAMagma) I:=[1, 8, 129, 1040]; [n le 4 select I[n] else 130*Self(n-2)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Dec 11 2013
reviewed
approved
proposed
reviewed
editing
proposed
a(2n) = A041495(2n), a(2n+1) = A041495(2n+1)*2. - M. F. Hasler, Feb 23 2020
approved
editing
editing
approved
<a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,130,0,-1).
reviewed
editing
proposed
reviewed
editing
proposed
a(n) = 16*a(n-1) + a(n-2) for n >= 2 even and a(n) = 8*a(n-1) + a(n-2) for n >= 2 odd. - _Nathaniel Johnston, _, Jun 26 2011
From Colin Barker, Feb 28 2013: (Start)
a(n) = 130*a(n-2) - a(n-4).
a(n) = 130*a(n-2) - a(n-4). G.f.: -(x^2 - 8*x - 1) / (x^4 - 130*x^2 + 1). - _Colin Barker_, Feb 28 2013(End)
a := proc(n) option remember: if(n<=1)then return (n+1)^3: fi: if(n mod 2 = 0)then return 16*a(n-1) + a(n-2): else return 8*a(n-1) + a(n-2): fi: end: seq(a(n), n=0..20); # _Nathaniel Johnston, _, Jun 26 2011
approved
editing