[go: up one dir, main page]

login
Revision History for A026787 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
a(n) = Sum_{k=0..n} T(n,k), T given by A026780.
(history; published version)
#16 by R. J. Mathar at Thu Feb 10 09:38:40 EST 2022
STATUS

editing

approved

#15 by R. J. Mathar at Thu Feb 10 09:37:41 EST 2022
FORMULA

C(x^2)/(1-x*C(x^2)) above is the o.g.f. for A001405. 1/(1-x*S(x^2)) above is the o.g.f for A026003 starting with an additional 1: 1,1,1,3,5,13,25,... - R. J. Mathar, Feb 10 2022

STATUS

approved

editing

#14 by Michel Marcus at Sun Nov 03 02:08:50 EST 2019
STATUS

reviewed

approved

#13 by Joerg Arndt at Sun Nov 03 02:04:03 EST 2019
STATUS

proposed

reviewed

#12 by G. C. Greubel at Sat Nov 02 18:59:39 EDT 2019
STATUS

editing

proposed

#11 by G. C. Greubel at Sat Nov 02 18:59:33 EDT 2019
NAME

Ta(n,) = Sum_{k=0) + T(..n,1) + ... } T(n,nk), T given by A026780.

LINKS

G. C. Greubel, <a href="/A026787/b026787.txt">Table of n, a(n) for n = 0..1000</a>

MAPLE

T:= proc(n, k) option remember;

if n<0 then 0;

elif k=0 or k =n then 1;

elif k <= n/2 then

procname(n-1, k-1)+procname(n-2, k-1)+procname(n-1, k) ;

else

procname(n-1, k-1)+procname(n-1, k) ;

fi ;

end proc:

seq( add(T(n, k), k=0..n), n=0..30); # G. C. Greubel, Nov 02 2019

MATHEMATICA

T[n_, k_]:= T[n, k]= If[n<0, 0, If[k==0 || k==n, 1, If[k<=n/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]];

Table[Sum[T[n, k], {k, 0, n}], {n, 0, 30}] (* G. C. Greubel, Nov 02 2019 *)

PROG

(Sage)

@CachedFunction

def T(n, k):

if (n<0): return 0

elif (k==0 or k==n): return 1

elif (k<=n/2): return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k)

else: return T(n-1, k-1) + T(n-1, k)

[sum(T(n, k) for k in (0..n)) for n in (0..30)] # G. C. Greubel, Nov 02 2019

STATUS

approved

editing

#10 by Max Alekseyev at Mon Nov 30 14:49:14 EST 2015
STATUS

editing

approved

#9 by Max Alekseyev at Mon Nov 30 14:49:12 EST 2015
FORMULA

O.g.f.: F(x^2)*(1/(1-x*S(x^2))+C(x^2)*x/(1-x*C(x^2))), where C(x)=(1-sqrt(1-4x))/(2 *x) is o.g.f. for A000108, S(x)=(1-x-sqrt(1-6*x+x^2))/(2*x) is o.g.f. for A006318, and F(x)=S(x)/(1-x*C(x)*S(x)) is o.g.f. for A026781. - Max Alekseyev, Jan 13 2015

STATUS

approved

editing

#8 by Max Alekseyev at Tue Jan 13 14:03:59 EST 2015
STATUS

editing

approved

#7 by Max Alekseyev at Tue Jan 13 14:03:46 EST 2015
DATA

1, 2, 5, 11, 26, 58, 136, 306, 717, 1625, 3813, 8697, 20451, 46909, 110563, 254855, 602042, 1393746, 3299304, 7666786, 18182976, 42391546, 100704606, 235452416, 560147414, 1312916040, 3127406812, 7346213746, 17518138314, 41228281888, 98408997716, 231990850378, 554207752781, 1308436686305, 3128033585157

FORMULA

O.g.f.: F(x^2)*(1/(1-x*S(x^2))+C(x^2)*x/(1-x*C(x^2))), where C(x)=(1-sqrt(1-4x))/2 is o.g.f. for A000108, S(x)=(1-x-sqrt(1-6*x+x^2))/(2*x) is o.g.f. for A006318, and F(x)=S(x)/(1-x*C(x)*S(x)) is o.g.f. for A026781. - Max Alekseyev, Jan 13 2015

EXTENSIONS

More terms from Max Alekseyev, Jan 13 2015

STATUS

approved

editing