[go: up one dir, main page]

login
Revision History for A026671 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Number of lattice paths from (0,0) to (n,n) with steps (0,1), (1,0) and, when on the diagonal, (1,1).
(history; published version)
#92 by Alois P. Heinz at Thu Sep 15 20:55:02 EDT 2022
STATUS

editing

approved

#91 by Alois P. Heinz at Thu Sep 15 20:54:58 EDT 2022
DATA

1, 3, 11, 43, 173, 707, 2917, 12111, 50503, 211263, 885831, 3720995, 15652239, 65913927, 277822147, 1171853635, 4945846997, 20884526283, 88224662549, 372827899079, 1576001732485, 6663706588179, 28181895551161, 119208323665543, 504329070986033, 2133944799315027

STATUS

approved

editing

#90 by Charles R Greathouse IV at Thu Sep 08 08:44:49 EDT 2022
PROG

(MAGMAMagma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 1/(Sqrt(1-4*x)-x) )); // G. C. Greubel, Jul 16 2019

Discussion
Thu Sep 08
08:44
OEIS Server: https://oeis.org/edit/global/2944
#89 by Joerg Arndt at Mon Jan 10 03:05:51 EST 2022
STATUS

reviewed

approved

#88 by Michel Marcus at Mon Jan 10 02:12:18 EST 2022
STATUS

proposed

reviewed

#87 by Peter Luschny at Mon Jan 10 02:07:56 EST 2022
STATUS

editing

proposed

#86 by Peter Luschny at Mon Jan 10 02:07:23 EST 2022
FORMULA

a(n) = C(n,m)/n*Sum_{k=1..n} k*F(k)*C(n,m-k), where F(n) = A000045(n). - Vladimir Kruchinin, Jan 09 2022

STATUS

proposed

editing

Discussion
Mon Jan 10
02:07
Peter Luschny: By request of the author.
#85 by Joerg Arndt at Sun Jan 09 11:02:02 EST 2022
STATUS

editing

proposed

Discussion
Sun Jan 09
11:13
Peter Luschny: ? What is m?
21:54
Vladimir Kruchinin: This is mistake. Remove this formula.
#84 by Joerg Arndt at Sun Jan 09 11:01:58 EST 2022
FORMULA

a(n) = C(n,m)/n*Sum_{k=1..n} k*F(k)*C(n,m-k), where F(n) - Fibonacci numbers (= A000045(n). - Vladimir Kruchinin, Jan 09 2022

STATUS

proposed

editing

#83 by Michel Marcus at Sun Jan 09 10:40:14 EST 2022
STATUS

editing

proposed