[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Revision History for A025189 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
a(n) = T(n,[ n/2 ]), where T is the array defined in A025177.
(history; published version)
#5 by Russ Cox at Fri Mar 30 18:56:01 EDT 2012
AUTHOR

Clark Kimberling (ck6(AT)evansville.edu)

Clark Kimberling

Discussion
Fri Mar 30
18:56
OEIS Server: https://oeis.org/edit/global/285
#4 by Russ Cox at Fri Mar 30 17:28:38 EDT 2012
PROG

Contribution from _Michael B. Porter (michael_b_porter(AT)yahoo.com), _, Feb 02 2010: (Start)

Discussion
Fri Mar 30
17:28
OEIS Server: https://oeis.org/edit/global/150
#3 by N. J. A. Sloane at Tue Jun 01 03:00:00 EDT 2010
PROG

Contribution from Michael B. Porter (michael_b_porter(AT)yahoo.com), Feb 02 2010: (Start)

(PARI) g=matrix(33, 65);

for(n=0, 32, for(k=0, 2*n, g[n+1, k+1]=0));

g[1, 1]=1;

g[2, 1]=1; g[2, 2]=0; g[2, 3]=1;

g[3, 1]=1; g[3, 2]=1; g[3, 3]=2; g[3, 4]=1; g[3, 5]=1;

for(n=0, 2, k=floor(n/2); print(n, " ", k, " ", g[n+1, k+1]))

for(n=3, 32, g[n+1, 1]=1; print(n, " 1 1"); g[n+1, 2]=n-1; print(n, " 2 ", n-1); for(k=2, 2*n, g[n+1, k+1]=g[n, k-1]+g[n, k]+g[n, k+1]; if(k==floor(n/2), print(n, " ", k, " ", g[n+1, k+1])))) (End)

KEYWORD

nonn,new

nonn

#2 by N. J. A. Sloane at Fri May 16 03:00:00 EDT 2003
KEYWORD

nonn,new

nonn

AUTHOR

Clark Kimberling (ck6@cedar.(AT)evansville.edu)

#1 by N. J. A. Sloane at Sat Dec 11 03:00:00 EST 1999
NAME

a(n) = T(n,[ n/2 ]), where T is the array defined in A025177.

DATA

1, 1, 1, 2, 7, 11, 35, 56, 189, 302, 1038, 1662, 5797, 9295, 32747, 52572, 186615, 299898, 1070762, 1722236, 6177698, 9943555, 35802935, 57663784, 208279007, 335631410, 1215507450, 1959644390, 7113090285, 11472439905, 41724381765, 67320086700

OFFSET

0,4

KEYWORD

nonn

AUTHOR

Clark Kimberling (ck6@cedar.evansville.edu)

STATUS

approved