Clark Kimberling (ck6(AT)evansville.edu)
Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
Clark Kimberling (ck6(AT)evansville.edu)
Contribution from _Michael B. Porter (michael_b_porter(AT)yahoo.com), _, Feb 02 2010: (Start)
Contribution from Michael B. Porter (michael_b_porter(AT)yahoo.com), Feb 02 2010: (Start)
(PARI) g=matrix(33, 65);
for(n=0, 32, for(k=0, 2*n, g[n+1, k+1]=0));
g[1, 1]=1;
g[2, 1]=1; g[2, 2]=0; g[2, 3]=1;
g[3, 1]=1; g[3, 2]=1; g[3, 3]=2; g[3, 4]=1; g[3, 5]=1;
for(n=0, 2, k=floor(n/2); print(n, " ", k, " ", g[n+1, k+1]))
for(n=3, 32, g[n+1, 1]=1; print(n, " 1 1"); g[n+1, 2]=n-1; print(n, " 2 ", n-1); for(k=2, 2*n, g[n+1, k+1]=g[n, k-1]+g[n, k]+g[n, k+1]; if(k==floor(n/2), print(n, " ", k, " ", g[n+1, k+1])))) (End)
nonn,new
nonn
nonn,new
nonn
Clark Kimberling (ck6@cedar.(AT)evansville.edu)
a(n) = T(n,[ n/2 ]), where T is the array defined in A025177.
1, 1, 1, 2, 7, 11, 35, 56, 189, 302, 1038, 1662, 5797, 9295, 32747, 52572, 186615, 299898, 1070762, 1722236, 6177698, 9943555, 35802935, 57663784, 208279007, 335631410, 1215507450, 1959644390, 7113090285, 11472439905, 41724381765, 67320086700
0,4
nonn
Clark Kimberling (ck6@cedar.evansville.edu)
approved