[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369190 revision #20

A369190
Expansion of (1/x) * Series_Reversion( x / ((1-x)^2 * (1+x)^4) ).
2
1, 2, 3, -2, -39, -176, -442, -26, 6222, 36062, 113240, 91632, -1303985, -9362520, -34625652, -50327818, 293446186, 2693939308, 11475384425, 23120716658, -62820989127, -813918935104, -3964894957296, -10002153961552, 10192131001136, 250612187843962
OFFSET
0,2
FORMULA
G.f.: exp( Sum_{k>=1} A368467(k) * x^k/k ).
a(n) = (1/(n+1)) * Sum_{k=0..n} (-1)^k * binomial(2*(n+1),k) * binomial(4*(n+1),n-k).
a(n) = (1/(n+1)) * [x^n] ( (1-x)^2 * (1+x)^4 )^(n+1).
PROG
(PARI) a(n) = sum(k=0, n, (-1)^k * binomial(2*(n+1), k)*binomial(4*(n+1), n-k))/(n+1);
CROSSREFS
Cf. A368467.
Sequence in context: A361531 A332734 A178134 * A291489 A075121 A075108
KEYWORD
sign
AUTHOR
Seiichi Manyama, Feb 10 2024
STATUS
approved