[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A178134
Sum_{m=0..(n-1)/2} A176263(n-m-1, m).
1
0, 1, 1, 2, -3, -2, -32, -81, -311, -810, -2515, -6864, -19944, -55043, -156023, -433522, -1217427, -3391226, -9488456, -26462205, -73933535, -206293134, -576040339, -1607642688, -4488069168, -12526662167, -34967630447
OFFSET
0,4
COMMENTS
The limiting ratio is (alternating) A222134, 5 times a root of the polynomial 5x^2+x-1 in the denominator of the g.f.
FORMULA
G.f. -x*(1-6*x^2-10*x^3-5*x^4+5*x^5) / ( (x-1)*(1+x)*(5*x^2+x-1)*(5*x^4+x^2-1) ). - R. J. Mathar, Nov 05 2012
MAPLE
A178134 := proc(n)
add( A176263(n-m-1, m), m=0..(n-1)/2) ;
end proc: # R. J. Mathar, May 15 2016
MATHEMATICA
Clear[a, f, a0, t]
f[0, a_] := 0; f[1, a_] := 1;
f[n_, a_] := f[n, a] = f[n - 1, a] + a*f[n - 2, a];
t[n_, m_, a_] := f[m + 1, a] + f[n + 1 - m, a] - f[n + 1, a];
a = 5;
a0[n_] := Sum[t[n - m - 1, m, a], {m, 0, Floor[(n - 1)/2]}];
Table[a0[n], {n, 0, 30}]
PROG
(PARI) a(n)=([0, 1, 0, 0, 0, 0, 0, 0; 0, 0, 1, 0, 0, 0, 0, 0; 0, 0, 0, 1, 0, 0, 0, 0; 0, 0, 0, 0, 1, 0, 0, 0; 0, 0, 0, 0, 0, 1, 0, 0; 0, 0, 0, 0, 0, 0, 1, 0; 0, 0, 0, 0, 0, 0, 0, 1; 25, 5, -25, -4, -6, -2, 7, 1]^n*[0; 1; 1; 2; -3; -2; -32; -81])[1, 1] \\ Charles R Greathouse IV, May 15 2016
CROSSREFS
Sequence in context: A019228 A361531 A332734 * A369190 A291489 A075121
KEYWORD
sign,easy
AUTHOR
Roger L. Bagula, May 20 2010
EXTENSIONS
New name from R. J. Mathar, May 15 2016
STATUS
approved