OFFSET
1,2
COMMENTS
Also numbers that can be factored in such a way that the length is divisible by the least common multiple.
EXAMPLE
The sequence of terms together with their prime indices begins:
1: {}
4: {1,1}
16: {1,1,1,1}
27: {2,2,2}
32: {1,1,1,1,1}
64: {1,1,1,1,1,1}
96: {1,1,1,1,1,2}
128: {1,1,1,1,1,1,1}
144: {1,1,1,1,2,2}
192: {1,1,1,1,1,1,2}
216: {1,1,1,2,2,2}
256: {1,1,1,1,1,1,1,1}
288: {1,1,1,1,1,2,2}
324: {1,1,2,2,2,2}
432: {1,1,1,1,2,2,2}
For example, 16000 has factorization 2*2*2*2*2*2*2*5*5*5, so is in the sequence.
For example, 24576 has factorizations:
(2*2*2*2*2*2*2*2*2*2*2*12)
(2*2*2*2*2*2*2*2*2*2*4*6)
(2*2*2*2*2*2*2*2*2*3*4*4)
so is in the sequence.
MATHEMATICA
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
Select[Range[1000], Select[facs[#], And@@IntegerQ/@(Length[#]/#)&]!={}&]
CROSSREFS
Positions of nonzero terms in A340851, which counts these factorizations.
The reciprocal version is A340853.
The version for strict partitions appears to be {1,3}.
A320911 can be factored into squarefree semiprimes.
A340597 have an alt-balanced factorization.
- Factorizations -
A316439 counts factorizations by product and length.
A339846 counts factorizations of even length.
A339890 counts factorizations of odd length.
A340653 counts balanced factorizations.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Feb 04 2021
STATUS
editing