[go: up one dir, main page]

login
A321197 revision #6

A321197
a(n) gives the A-sequence for the Riordan matrix (1/(1 + x^2 - x^3), x/(1 + x^2 - x^3)) from A321196.
1
1, 0, -1, 1, -1, 3, -4, 10, -20, 42, -98, 210, -492, 1122, -2607, 6149, -14443, 34463, -82238, 197574, -476918, 1154402, -2807516, 6845016, -16743674, 41067512, -100967539, 248843095, -614546545, 1520779665
OFFSET
0,6
COMMENTS
See the recurrence formula for A321196 from the A- and Z-sequences.
FORMULA
a(n) = [t^n] (1/f(t)), where f(t) = F^{[-1]}(t)/t, with the compositional inverse F^{[-1]}(t) of F(x) = 1/(1 + x^2 - x^3). The expansion of f is given by (-1)^n*A001005(n), for n >= 0.
CROSSREFS
Sequence in context: A255539 A326832 A357812 * A109887 A200981 A266729
KEYWORD
sign
AUTHOR
Wolfdieter Lang, Oct 30 2018
STATUS
reviewed