[go: up one dir, main page]

login
a(n) gives the A-sequence for the Riordan matrix (1/(1 + x^2 - x^3), x/(1 + x^2 - x^3)) from A321196.
1

%I #7 Nov 14 2018 01:12:25

%S 1,0,-1,1,-1,3,-4,10,-20,42,-98,210,-492,1122,-2607,6149,-14443,34463,

%T -82238,197574,-476918,1154402,-2807516,6845016,-16743674,41067512,

%U -100967539,248843095,-614546545,1520779665

%N a(n) gives the A-sequence for the Riordan matrix (1/(1 + x^2 - x^3), x/(1 + x^2 - x^3)) from A321196.

%C See the recurrence formula for A321196 from the A- and Z-sequences.

%F a(n) = [t^n] (1/f(t)), where f(t) = F^{[-1]}(t)/t, with the compositional inverse F^{[-1]}(t) of F(x) = 1/(1 + x^2 - x^3). The expansion of f is given by (-1)^n*A001005(n), for n >= 0.

%Y Cf. A001005, A321196.

%K sign

%O 0,6

%A _Wolfdieter Lang_, Oct 30 2018